logo资料库

GeNIe模型用户使用手册(2019版).pdf

第1页 / 共576页
第2页 / 共576页
第3页 / 共576页
第4页 / 共576页
第5页 / 共576页
第6页 / 共576页
第7页 / 共576页
第8页 / 共576页
资料共576页,剩余部分请下载后查看
Table of Contents
Read me first
Hello GeNIe!
Introduction
Guide to GeNIe manual
GeNIe Modeler
SMILE Engine
Distribution information
GeNIe on a Mac
Copyright notice
Disclaimer
Acknowledgments
Decision-theoretic modeling
Decision analysis
Discrete and continuous variables
Probability
Utility
Bayesian networks
Influence diagrams
Bayesian updating
Solving decision models
Changes in structure
Decision support systems
Computational complexity
Building blocks of GeNIe
Introduction
GeNIe workspace
Introduction
The menu bar
Graph view
Tree view
Status bar
Case manager
Output window
Help menu
Components of GeNIe models
Node types
Canonical models
Multi-attribute utility nodes
Submodels
Arcs
Node status icons
Text boxes
Annotations
Model and component properties
Network properties
Submodel properties
Tools menu and Standard toolbar
Node properties
Visual appearance, layout, and navigation
Introduction
Viewing nodes in the Graph View
Zooming and full screen mode
Format toolbar and Layout menu
Graph layout functions
Selection of model elements
Model navigation tools
Saving and loading models in GeNIe
Introduction
File menu
XDSL file format
DSL file format
Ergo file format
Netica file format
BN interchange format
Hugin file format
KI file format
Inference algorithms
Introduction
Immediate and lazy evaluation
Relevance reasoning
Node menu
Network menu
Bayesian networks algorithms
Exact algorithms
Clustering algorithm
Relevance-based decomposition
Polytree algorithm
Stochastic sampling algorithms
Probabilistic Logic Sampling
Likelihood Sampling
Backward Sampling
AIS algorithm
EPIS Sampling
Special algorithms
Probability of evidence
Annealed MAP
Influence diagrams algorithms
Policy evaluation
Find Best Policy
Algorithms for continuous and hybrid models
Introduction
Autodiscretization
Hybrid Forward Sampling
Obfuscation
Program options
Keyboard shortcuts
Using GeNIe
Introduction
Bayesian networks
Building a Bayesian network
Useful structural transformations
Entering and retracting evidence
Virtual evidence
Viewing results
Strength of influences
Controlling values
Sensitivity analysis in Bayesian networks
Influence diagrams
Building an influence diagram
Viewing results
Sensitivity analysis in influence diagrams
Value of information
Support for diagnosis
Introduction
Diagnosis menu
Diagnosis toolbar
Enabling diagnostic extensions
Spreadsheet view
Testing window
Diagnostic case management
Cost of observation
Learning
Data format
Accessing data
Data menu
Cleaning data
Knowledge editor
Pattern editor
Structural learning
Introduction
Bayesian Search
PC
Greedy Thick Thinning
Tree Augmented Naive Bayes
Augmented Naive Bayes
Naive Bayes
Learning parameters
Generating a data file
Validation
Dynamic Bayesian networks
Introduction
Creating DBN
Inference in DBNs
Learning DBN parameters
Equation-based and hybrid models
Introduction
Constructing equation-based models
Writing equations in GeNIe
Introduction
Functions
Probability distributions
Arithmetic functions
Combinatoric functions
Trigonometric functions
Hyperbolic functions
Logical/Conditional functions
Operators
Hybrid models
Inference in equation-based and hybrid models
Viewing results in equation-based models
Resources
Books
Research papers
Conferences
Model repositories
Social Media
References
Index
GeNIe Modeler USER MANUAL ® Version 2.3.R4, Built on 2/27/2019 BayesFusion, LLC
This page is intentionally left blank. Remove this text from the manual template if you want it completely blank.
Table of Contents 3 1. Read me first 2. Hello GeNIe! Introduction 3. 9 13 31 Guide to GeNIe manual .................................................................................................... 32 GeNIe Modeler .................................................................................................................. 32 SMILE Engine ..................................................................................................................... 33 Distribution information .................................................................................................. 34 GeNIe on a Mac ................................................................................................................. 36 Copyright notice ................................................................................................................ 37 Disclaimer ........................................................................................................................... 39 Acknowledgments ............................................................................................................. 39 41 Decision analysis ................................................................................................................ 42 Discrete and continuous variables .................................................................................. 42 Probability ......................................................................................................................... 43 Utility .................................................................................................................................. 44 Bayesian networks ............................................................................................................ 45 Influence diagrams ............................................................................................................ 55 Bayesian updating ............................................................................................................. 57 Solving decision models ................................................................................................... 58 Changes in structure ......................................................................................................... 59 Decision support systems ................................................................................................. 59 Computational complexity ............................................................................................... 62 65 Introduction ...................................................................................................................... 66 GeNIe workspace ............................................................................................................... 67 Introduction ................................................................................................................. 67 The menu bar .............................................................................................................. 69 Graph view .................................................................................................................. 70 Tree view ..................................................................................................................... 91 Status bar .................................................................................................................... 94 Case manager ............................................................................................................. 96 Output window .......................................................................................................... 101 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 4. Decision-theoretic modeling 5. Building blocks of GeNIe GeNIe Modeler Version 2.3.R4, Built on 2/27/2019
Table of Contents 4 5.2.8 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.5 5.5.1 5.5.2 5.5.3 5.5.4 5.5.5 5.5.6 5.5.7 5.6 5.6.1 5.6.2 5.6.3 5.6.4 5.6.5 5.6.6 5.6.7 5.6.8 5.6.9 5.7 5.7.1 5.7.2 5.7.3 5.7.4 5.7.5 5.7.6 Help menu ................................................................................................................. 102 Components of GeNIe models ........................................................................................ 103 Node types ................................................................................................................ 103 Canonical models ...................................................................................................... 106 Multi-attribute utility nodes ...................................................................................... 122 Submodels ................................................................................................................. 127 Arcs ............................................................................................................................ 137 Node status icons ...................................................................................................... 141 Text boxes ................................................................................................................. 144 Annotations ............................................................................................................... 145 Model and component properties ................................................................................ 148 Network properties .................................................................................................... 148 Submodel properties ................................................................................................. 157 Tools menu and Standard toolbar ............................................................................. 160 Node properties ......................................................................................................... 162 Visual appearance, layout, and navigation .................................................................. 197 Introduction ............................................................................................................... 197 Viewing nodes in the Graph View ............................................................................. 197 Zooming and full screen mode .................................................................................. 200 Format toolbar and Layout menu .............................................................................. 201 Graph layout functions .............................................................................................. 206 Selection of model elements ..................................................................................... 208 Model navigation tools ............................................................................................. 210 Saving and loading models in GeNIe ............................................................................. 212 Introduction ............................................................................................................... 212 File menu ................................................................................................................... 217 XDSL file format ......................................................................................................... 221 DSL file format ........................................................................................................... 221 Ergo file format ......................................................................................................... 222 Netica file format ...................................................................................................... 223 BN interchange format .............................................................................................. 224 Hugin file format ....................................................................................................... 224 KI file format .............................................................................................................. 224 Inference algorithms ....................................................................................................... 224 Introduction ............................................................................................................... 224 Immediate and lazy evaluation ................................................................................. 227 Relevance reasoning ................................................................................................. 228 Node menu ................................................................................................................ 232 Network menu ........................................................................................................... 234 Bayesian networks algorithms .................................................................................. 236 GeNIe Modeler Version 2.3.R4, Built on 2/27/2019
Table of Contents 5 5.7.6.1 5.7.6.2 5.7.6.3 5.7.7 5.7.8 5.7.7.1 5.7.7.2 5.7.8.1 5.7.8.2 5.7.8.3 6. Using GeNIe 5.7.6.1.1 5.7.6.1.2 5.7.6.1.3 5.7.6.2.1 5.7.6.2.2 5.7.6.2.3 5.7.6.2.4 5.7.6.2.5 5.7.6.3.1 5.7.6.3.2 Exact algorithms ......................................................................................................................................... 236 Clustering algorithm ............................................................................................................................ 236 Relevance-based decomposition ....................................................................................................... 238 Polytree algorithm ................................................................................................................................ 238 Stochastic sampling algorithms .............................................................................................................. 239 Probabilistic Logic Sampling ............................................................................................................. 239 Likelihood Sampling ............................................................................................................................. 239 Backward Sampling .............................................................................................................................. 239 AIS algorithm ......................................................................................................................................... 239 EPIS Sampling ........................................................................................................................................ 240 Special algorithms ..................................................................................................................................... 241 Probability of evidence ....................................................................................................................... 241 Annealed MAP ....................................................................................................................................... 245 Influence diagrams algorithms ................................................................................. 252 Policy evaluation ........................................................................................................................................ 252 Find Best Policy ........................................................................................................................................... 253 Algorithms for continuous and hybrid models .......................................................... 254 Introduction ................................................................................................................................................. 254 Autodiscretization ...................................................................................................................................... 255 Hybrid Forward Sampling ......................................................................................................................... 258 Obfuscation ..................................................................................................................... 259 Program options ............................................................................................................. 265 Keyboard shortcuts ......................................................................................................... 271 275 Introduction .................................................................................................................... 276 Bayesian networks .......................................................................................................... 276 Building a Bayesian network ..................................................................................... 276 Useful structural transformations ............................................................................. 276 Entering and retracting evidence .............................................................................. 282 Virtual evidence ........................................................................................................ 287 Viewing results .......................................................................................................... 290 Strength of influences ............................................................................................... 297 Controlling values ..................................................................................................... 304 Sensitivity analysis in Bayesian networks ................................................................ 307 Influence diagrams .......................................................................................................... 314 Building an influence diagram .................................................................................. 314 Viewing results .......................................................................................................... 322 Sensitivity analysis in influence diagrams ................................................................ 323 Value of information ................................................................................................. 328 Support for diagnosis ..................................................................................................... 335 Introduction ............................................................................................................... 335 5.8 5.9 5.10 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.4 6.4.1 GeNIe Modeler Version 2.3.R4, Built on 2/27/2019
Table of Contents 6 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 6.4.8 6.5 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7 6.5.7.1 6.5.7.2 6.5.7.3 6.5.7.4 6.5.7.5 6.5.7.6 6.5.7.7 Diagnosis menu ......................................................................................................... 336 Diagnosis toolbar ...................................................................................................... 339 Enabling diagnostic extensions ................................................................................ 340 Spreadsheet view ...................................................................................................... 349 Testing window ......................................................................................................... 356 Diagnostic case management ................................................................................... 363 Cost of observation ................................................................................................... 366 Learning ........................................................................................................................... 371 Data format ............................................................................................................... 371 Accessing data .......................................................................................................... 372 Data menu ................................................................................................................. 384 Cleaning data ............................................................................................................ 386 Knowledge editor ...................................................................................................... 414 Pattern editor ............................................................................................................ 421 Structural learning ..................................................................................................... 425 Introduction ................................................................................................................................................. 425 Bayesian Search .......................................................................................................................................... 433 PC ................................................................................................................................................................... 435 Greedy Thick Thinning ............................................................................................................................... 441 Tree Augmented Naive Bayes .................................................................................................................... 443 Augmented Naive Bayes ............................................................................................................................. 445 Naive Bayes .................................................................................................................................................. 448 Learning parameters ................................................................................................. 451 Generating a data file ............................................................................................... 458 Validation .................................................................................................................. 462 Dynamic Bayesian networks .......................................................................................... 484 Introduction ............................................................................................................... 484 Creating DBN ............................................................................................................. 485 Inference in DBNs ..................................................................................................... 492 Learning DBN parameters ......................................................................................... 502 Equation-based and hybrid models .............................................................................. 508 Introduction ............................................................................................................... 508 Constructing equation-based models ....................................................................... 508 Writing equations in GeNIe ....................................................................................... 514 Introduction ................................................................................................................................................. 514 Functions ...................................................................................................................................................... 518 Probability distributions .................................................................................................................... 518 Arithmetic functions ............................................................................................................................ 526 Combinatoric functions ...................................................................................................................... 528 Trigonometric functions ...................................................................................................................... 529 Hyperbolic functions ........................................................................................................................... 529 Logical/Conditional functions ........................................................................................................... 530 Operators ..................................................................................................................................................... 531 6.5.8 6.5.9 6.5.10 6.6 6.6.1 6.6.2 6.6.3 6.6.4 6.7 6.7.1 6.7.2 6.7.3 6.7.3.1 6.7.3.2 6.7.3.2.1 6.7.3.2.2 6.7.3.2.3 6.7.3.2.4 6.7.3.2.5 6.7.3.2.6 6.7.3.3 GeNIe Modeler Version 2.3.R4, Built on 2/27/2019
Table of Contents 7 7. Resources Hybrid models ........................................................................................................... 533 Inference in equation-based and hybrid models ...................................................... 536 Viewing results in equation-based models ............................................................... 546 559 Books ................................................................................................................................ 560 Research papers .............................................................................................................. 560 Conferences ..................................................................................................................... 561 Model repositories .......................................................................................................... 562 Social Media .................................................................................................................... 562 References ........................................................................................................................ 563 571 6.7.4 6.7.5 6.7.6 7.1 7.2 7.3 7.4 7.5 7.6 Index GeNIe Modeler Version 2.3.R4, Built on 2/27/2019
This page is intentionally left blank. Remove this text from the manual template if you want it completely blank.
分享到:
收藏