logo资料库

Mathematica for Theoretical Physics Classical Mechanics and Nonl....pdf

第1页 / 共556页
第2页 / 共556页
第3页 / 共556页
第4页 / 共556页
第5页 / 共556页
第6页 / 共556页
第7页 / 共556页
第8页 / 共556页
资料共556页,剩余部分请下载后查看
cover-image-large
Preface
Contents
1 Introduction
1.1 Basics
1.1.1 Structure of Mathematica
1.1.2 Interactive Use of Mathematica
1.1.3 Symbolic Calculations
1.1.4 Numerical Calculations
1.1.5 Graphics
1.1.6 Programming
2 Classical Mechanics
2.1 Introduction
2.2 Mathematical Tools
2.2.1 Introduction
2.2.2 Coordinates
2.2.3 Coordinate Transformations and Matrices
2.2.4 Scalars
2.2.5 Vectors
2.2.6 Tensors
2.2.7 Vector Products
2.2.8 Derivatives
2.2.9 Integrals
2.210 Exercises
2.3 Kinematics
2.3.1 Introduction
2.3.2 Velocity
2.3.3 Acceleration
2.3.4 Kinematic Examples
2.3.5 Exercises
2.4 Newtonian Mechanics
2.4.1 Introduction
2.4.2 Frame of Reference
2.4.3 Time
2.4.4 Mass
2.4.5 Newton's Laws
2.4.6 Forces in Nature
2.4.6.1 The Fundamental Forces
2.4.7 Conservation Laws
2.4.7.1 Linear Momentum
2.4.7.2 Angular Momentum
2.4.7.3 Work and Energy
2.4.7.4 Constant Forces
2.4.8 Application of Newton's Second Law
2.4.8.1 Falling Particle
2.4.8.2 Harmonic Oscillator
2.4.8.3 The Phase Diagram
2.4.8.4 Damped Harmonic Oscillator
2.4.8.5 Driven Oscillations
2.4.8.6 Solution Procedures of Liner Differential Equations
2.4.8.7 Nonlinear Oscillation
2.4.8.8 Damped Driven Nonlinear Oscillator
2.4.9 Exercises
2.4.10 Packages and Programs
2.5 Central Forces
2.5.1 Introduction
2.5.2 Kepler's Laws
2.5.3 Central Field Motion
2.5.3.1 Equations of Motion
2.5.3.2 Orbits in a Central Force Field
2.5.3.3 Effective Potential
2.5.3.4 Planet Motions
2.5.4 Two-Particle Collisions and Scattering
2.5.4.1 Elastic Collisions
2.5.4.2 Scattering Cross Section
2.5.4.3 Rutherford Scattering
2.5.5 Exercises
2.5.6 Packages and Programs
2.6 Calculus of Variations
2.6.1 Introduction
2.6.2 The Problem of Variations
2.6.3 Euler’s Equation
2.6.4 Euler Operator
2.6.5 Algorithm Used in the Calculus of Variations
2.6.6 Euler Operator for q Dependent Variables
2.6.7 Euler Operator for q + p Dimensions
2.6.8 Variations with Constraints
2.6.9 Exercises
2.6.10 Packages and Programs
2.7 Lagrange Dynamics
2.7.1 Introduction
2.7.2 Hamilton's Principle Historical Remarks
2.7.3 Hamilton's Principle
2.7.3.1 Classes of Constraints
2.7.4 Symmetries and Conservation Laws
2.7.4.1 Conservation of Energy and Translation in Time
2.7.4.2 Conservation of Momentum
2.7.4.3 Conservation of Angular Momentum
2.7.5 Exercises
2.7.6 Packages and Programs
2.8 Hamiltonian Dynamics
2.8.1 Introduction
2.8.2 Legendre Transform
2.8.3 Hamilton's Equation of Motion
2.8.4 Hamilton's Equations and the Calculus of Variation
2.8.5 Liouville's Theorem
2.8.6 Poisson Brackets
2.8.7 Manifolds and Classes
2.8.7.1 A Two-Dimensional Poisson Manifold
2.8.7.2 A Four-Dimensional Poisson Manifold
2.8.7.3 Hamilton's Equations Derived from the Manifold
2.8.7.4 Hamilton's Equations Derived from the Hamilton–Poisson Manifold
2.8.8 Canonical Transformations
2.8.9 Generating Functions
2.8.10 Action Variables
2.8.10.1 One-Dimensional Hamilton–Jacobi Equation
2.8.10.2 Action Angle Variables for one Dimension
2.8.10.3 Separation of Hamiltonians
2.8.11 Exercises
2.8.12 Packages and Programs
2.9 Chaotic Systems
2.9.1 Introduction
2.9.2 Discrete Mappings and Hamiltonians
2.9.3 Lyapunov Exponent
2.9.4 Exercises
2.10 Rigid Body
2.10.1 Introduction
2.10.2 The Inertia Tensor
2.10.3 The Angular Momentum
2.10.4 Principal Axes of Inertia
2.10.5 Steiner's Theorem
2.10.6 Euler's Equations of Motion
2.10.7 Force-Free Motion of a Symmetrical Top
2.10.8 Motion of a Symmetrical Top in a Force Field
2.10.9 Exercises
2.10.10 Packages and Programs
3 Nonlinear Dynamics
3.1 Introduction
3.2 The Korteweg–de Vries Equation
3.3 Solution of the Korteweg–de Vries Equation
3.3.1 The Inverse Scattering Transform
3.3.2 Soliton Solutions of the Korteweg–de Vries Equation
3.4 Conservation Laws of the Korteweg–de Vries Equation
3.4.1 Definition of Conservation Laws
3.4.2 Derivation of Conservation Laws
3.5 Numerical Solution of the Korteweg–de Vries Equation
3.6 Exercises
3.7 Packages and Programs
3.7.1 Solution of the KdV Equation
3.7.2 Conservation Laws for the KdV Equation
3.7.3 Numerical Solution of the KdV Equation
References
Volume I
Volume II
Index
Mathematica® for Theoretical Physics
Mathematica® for Theoretical Physics Classical Mechanics and Nonlinear Dynamics Second Edition Gerd Baumann CD-ROM Included
Gerd Baumann Department of Mathematics German University in Cairo GUC New Cairo City Main Entrance of Al Tagamoa Al Khames Egypt Gerd.Baumann@GUC.edu.eg This is a translated, expanded, and updated version of the original German version of the work “Mathematica® in der Theoretischen Physik,” published by Springer-Verlag Heidelberg, 1993 ©. Library of Congress Cataloging-in-Publication Data Baumann, Gerd. [Mathematica in der theoretischen Physik. English] Mathematica for theoretical physics / by Gerd Baumann.—2nd ed. p. cm. Includes bibliographical references and index. Contents: 1. Classical mechanics and nonlinear dynamics — 2. Electrodynamics, quantum mechanics, general relativity, and fractals. ISBN 0-387-01674-0 1. Mathematical physics—Data processing. QC20.7.E4B3813 2004 530′.285′53—dc22 2. Mathematica (Computer file) I. Title. 2004046861 e-ISBN 0-387-25113-8 Printed on acid-free paper. ISBN-10: 0-387-01674-0 ISBN-13: 978-0387-01674-0 © 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, com- puter software, or by similar or dissimilar methodology now known or hereafter developed is for- bidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Mathematica, MathLink, and Math Source are registered trademarks of Wolfram Research, Inc. Printed in the United States of America. (HAM) 9 8 7 6 5 4 3 2 1 springeronline.com
To Carin, for her love, support, and encuragement.
Preface As physicists, mathematicians or engineers, we are all involved with mathematical calculations in our everyday work. Most of the laborious, complicated, and time-consuming calculations have to be done over and over again if we want to check the validity of our assumptions and derive new phenomena from changing models. Even in the age of computers, we often use paper and pencil to do our calculations. However, computer programs like Mathematica have revolutionized our working methods. Mathematica not only supports popular numerical calculations but also enables us to do exact analytical calculations by computer. Once we know the analytical representations of physical phenomena, we are able to use Mathematica to create graphical representations of these relations. Days of calculations by hand have shrunk to minutes by using Mathematica. Results can be verified within a few seconds, a task that took hours if not days in the past. The present text uses Mathematica as a tool to discuss and to solve examples from physics. The intention of this book is to demonstrate the usefulness of Mathematica in everyday applications. We will not give a complete description of its syntax but demonstrate by examples the use of its language. In particular, we show how this modern tool is used to solve classical problems.
viii Preface This second edition of Mathematica in Theoretical Physics seeks to prevent the objectives and emphasis of the previous edition. It is extended to include a full course in classical mechanics, new examples in quantum mechanics, and measurement methods for fractals. In addition, there is an extension of the fractal's chapter by a fractional calculus. The additional material and examples enlarged the text so much that we decided to divide the book in two volumes. The first volume covers classical mechanics and nonlinear dynamics. The second volume starts with electrodynamics, adds quantum mechanics and general relativity, and ends with fractals. Because of the inclusion of new materials, it was necessary to restructure the text. The main differences are concerned with the chapter on nonlinear dynamics. This chapter discusses mainly classical field theory and, thus, it was appropriate to locate it in line with the classical mechanics chapter. The text contains a large number of examples that are solvable using Mathematica. The defined functions and packages are available on CD accompanying each of the two volumes. The names of the files on the CD carry the names of their respective chapters. Chapter 1 comments on the basic properties of Mathematica using examples from different fields of physics. Chapter 2 demonstrates the use of Mathematica in a step-by-step procedure applied to mechanical problems. Chapter 2 contains a one-term lecture in mechanics. It starts with the basic definitions, goes on with Newton's mechanics, discusses the Lagrange and Hamilton representation of mechanics, and ends with the rigid body motion. We show how Mathematica is used to simplify our work and to support and derive solutions for specific problems. In Chapter 3, we examine nonlinear phenomena of the Korteweg–de Vries equation. We demonstrate that Mathematica is an appropriate tool to derive numerical and analytical solutions even for nonlinear equations of motion. The second volume starts with Chapter 4, discussing problems of electrostatics and the motion of ions in an electromagnetic field. We further introduce Mathematica functions that are closely related to the theoretical considerations of the selected problems. In Chapter 5, we discuss problems of quantum mechanics. We examine the dynamics of a free particle by the example of the time-dependent Schrödinger equation and study one-dimensional eigenvalue problems using the analytic and
Preface ix numeric capabilities of Mathematica. Problems of general relativity are discussed in Chapter 6. Most standard books on Einstein's theory discuss the phenomena of general relativity by using approximations. With Mathematica, general relativity effects like the shift of the perihelion can be tracked with precision. Finally, the last chapter, Chapter 7, uses computer algebra to represent fractals and gives an introduction to the spatial renormalization theory. In addition, we present the basics of fractional calculus approaching fractals from the analytic side. This approach is supported by a package, FractionalCalculus, which is not included in this project. The package is available by request from the author. Exercises with which Mathematica can be used for modified applications. Chapters 2–7 include at the end some exercises allowing the reader to carry out his own experiments with the book. Acknowledgments Since the first printing of this text, many people made valuable contributions and gave excellent input. Because the number of responses are so numerous, I give my thanks to all who contributed by remarks and enhancements to the text. Concerning the historical pictures used in the text, I acknowledge the support of the http://www-gapdcs.st-and.ac.uk/~history/ webserver of the University of St Andrews, Scotland. My special thanks go to Norbert Südland, who made the package FractionalCalculus available for this text. I'm also indebted to Hans Kölsch and Virginia Lipscy, Springer-Verlag New York Physics editorial. Finally, the author deeply appreciates the understanding and support of his wife, Carin, and daughter, Andrea, during the preparation of the book. Ulm, Winter 2004 Gerd Baumann
分享到:
收藏