cover-image-large
Preface
Contents
1 Introduction
1.1 Basics
1.1.1 Structure of Mathematica
1.1.2 Interactive Use of Mathematica
1.1.3 Symbolic Calculations
1.1.4 Numerical Calculations
1.1.5 Graphics
1.1.6 Programming
2 Classical Mechanics
2.1 Introduction
2.2 Mathematical Tools
2.2.1 Introduction
2.2.2 Coordinates
2.2.3 Coordinate Transformations and Matrices
2.2.4 Scalars
2.2.5 Vectors
2.2.6 Tensors
2.2.7 Vector Products
2.2.8 Derivatives
2.2.9 Integrals
2.210 Exercises
2.3 Kinematics
2.3.1 Introduction
2.3.2 Velocity
2.3.3 Acceleration
2.3.4 Kinematic Examples
2.3.5 Exercises
2.4 Newtonian Mechanics
2.4.1 Introduction
2.4.2 Frame of Reference
2.4.3 Time
2.4.4 Mass
2.4.5 Newton's Laws
2.4.6 Forces in Nature
2.4.6.1 The Fundamental Forces
2.4.7 Conservation Laws
2.4.7.1 Linear Momentum
2.4.7.2 Angular Momentum
2.4.7.3 Work and Energy
2.4.7.4 Constant Forces
2.4.8 Application of Newton's Second Law
2.4.8.1 Falling Particle
2.4.8.2 Harmonic Oscillator
2.4.8.3 The Phase Diagram
2.4.8.4 Damped Harmonic Oscillator
2.4.8.5 Driven Oscillations
2.4.8.6 Solution Procedures of Liner Differential Equations
2.4.8.7 Nonlinear Oscillation
2.4.8.8 Damped Driven Nonlinear Oscillator
2.4.9 Exercises
2.4.10 Packages and Programs
2.5 Central Forces
2.5.1 Introduction
2.5.2 Kepler's Laws
2.5.3 Central Field Motion
2.5.3.1 Equations of Motion
2.5.3.2 Orbits in a Central Force Field
2.5.3.3 Effective Potential
2.5.3.4 Planet Motions
2.5.4 Two-Particle Collisions and Scattering
2.5.4.1 Elastic Collisions
2.5.4.2 Scattering Cross Section
2.5.4.3 Rutherford Scattering
2.5.5 Exercises
2.5.6 Packages and Programs
2.6 Calculus of Variations
2.6.1 Introduction
2.6.2 The Problem of Variations
2.6.3 Euler’s Equation
2.6.4 Euler Operator
2.6.5 Algorithm Used in the Calculus of Variations
2.6.6 Euler Operator for q Dependent Variables
2.6.7 Euler Operator for q + p Dimensions
2.6.8 Variations with Constraints
2.6.9 Exercises
2.6.10 Packages and Programs
2.7 Lagrange Dynamics
2.7.1 Introduction
2.7.2 Hamilton's Principle Historical Remarks
2.7.3 Hamilton's Principle
2.7.3.1 Classes of Constraints
2.7.4 Symmetries and Conservation Laws
2.7.4.1 Conservation of Energy and Translation in Time
2.7.4.2 Conservation of Momentum
2.7.4.3 Conservation of Angular Momentum
2.7.5 Exercises
2.7.6 Packages and Programs
2.8 Hamiltonian Dynamics
2.8.1 Introduction
2.8.2 Legendre Transform
2.8.3 Hamilton's Equation of Motion
2.8.4 Hamilton's Equations and the Calculus of Variation
2.8.5 Liouville's Theorem
2.8.6 Poisson Brackets
2.8.7 Manifolds and Classes
2.8.7.1 A Two-Dimensional Poisson Manifold
2.8.7.2 A Four-Dimensional Poisson Manifold
2.8.7.3 Hamilton's Equations Derived from the Manifold
2.8.7.4 Hamilton's Equations Derived from the
Hamilton–Poisson Manifold
2.8.8 Canonical Transformations
2.8.9 Generating Functions
2.8.10 Action Variables
2.8.10.1 One-Dimensional Hamilton–Jacobi Equation
2.8.10.2 Action Angle Variables for one Dimension
2.8.10.3 Separation of Hamiltonians
2.8.11 Exercises
2.8.12 Packages and Programs
2.9 Chaotic Systems
2.9.1 Introduction
2.9.2 Discrete Mappings and Hamiltonians
2.9.3 Lyapunov Exponent
2.9.4 Exercises
2.10 Rigid Body
2.10.1 Introduction
2.10.2 The Inertia Tensor
2.10.3 The Angular Momentum
2.10.4 Principal Axes of Inertia
2.10.5 Steiner's Theorem
2.10.6 Euler's Equations of Motion
2.10.7 Force-Free Motion of a Symmetrical Top
2.10.8 Motion of a Symmetrical Top in a Force Field
2.10.9 Exercises
2.10.10 Packages and Programs
3
Nonlinear Dynamics
3.1 Introduction
3.2 The Korteweg–de Vries Equation
3.3 Solution of the Korteweg–de Vries Equation
3.3.1 The Inverse Scattering Transform
3.3.2 Soliton Solutions of the Korteweg–de Vries Equation
3.4 Conservation Laws of the Korteweg–de
Vries Equation
3.4.1 Definition of Conservation Laws
3.4.2 Derivation of Conservation Laws
3.5 Numerical Solution of the Korteweg–de
Vries Equation
3.6 Exercises
3.7 Packages and Programs
3.7.1 Solution of the KdV Equation
3.7.2 Conservation Laws for the KdV Equation
3.7.3 Numerical Solution of the KdV Equation
References
Volume I
Volume II
Index