6145.-
82
1.1.1.
x(n) + y(n) = z(n)
x(n) ⋅ y(n) = z(n)
n
∑
k= − ∞
y(n) =
x(k)
Δx(n) = x(n+ 1) − x(n)
∇x(n) = x(n) − x(n− 1)
1.1.2.
x(n) → x(n+ m)
x(n) → x(n− m)
6145.-
x(n) → x(− n)
1.1.3.
D
x(Dn) x(n)
x(n/D) x(n)
D
(D − 1)
1.1.4.
x(n) * h (n) =
∞
∑
m= − ∞
x(m)h (n− m)
M
x(n)
N h (n)
x(n) * δ(n) = x(n)
N + M − 1
1-1
6145.-
x(n) =
{ 4 5 2 1}
h (n) =
{ 1 3 6 }
782
1.2.1.
δ(n)
δT(t) =
∞
∑
n= − ∞
δ(t − nT )
̂xa(t) = xa(t) ⋅ δT(t) = xa(t) ⋅
∞
∑
n= − ∞
δ(t − nT )
6145.-
1.2.2.
u (n)
δ(n) = u (n) −
u (n− 1)
u (n) = δ(n) + δ(n− 1) + δ(n− 2) + … =
∞
∑
m= 0
δ(n− m)
1.2.3.
RN(n)
RN(n) =
RN(n) = u (n) −
u (n− N )
RN(n) = δ(n) + δ(n− 1) + … + δ(n− (N − 1)) =
N− 1
∑
m= 0
δ(n− m)
1.2.4.
x(n) = anu (n)
a
|a| < 1
|a| > 1
x(n) = e(σ+ jω0)n= eσ⋅ne jω0n= eσ⋅n(cos ω0n+ j sin ω0n)
σ = 0
x(n) = e jω0n
1.2.5.
6145.-
x(n) = A sin(nω0 + ϕ)
ω0
x(n) = A sin(nω0 + ϕ)
x(n) = e jω0n= cos(ω0n) + j sin(ω0n)
ω0
x(n)
2π
ω0
x(n) = x(n+ N )
= N
(1) 2π
ω0
N
x(n)
N = P (3) 2π
ω0
N (2) 2π
ω0
=
P
Q
π
n)
x(n)
1-2
(1) x1(n) = sin( π
n)
8
(3) x3(n) = sin(0.4n)
(2) x2(n) = sin(3π
10
6145.-
6
1.3.1.
xa(t) = A sin(Ω0t + ϕ)
Ω0 = 2π f0 = 2π
T0
Hz
Ω0
1/s
/
f0
T0 = 1
f0
x(n) = A sin(nω0 + ϕ)
ω0
ω0
(0,2π]
(s)
x(n) = e jω0n= cos(ω0n) + j sin(ω0n)
(rad)
1.3.2.
T
xa(t) = A sin(Ω0t + ϕ)
Ω0 = 2π f0 = 2π
T0
x(n) = xa(t)|t= nT = A sin(Ω0nT + ϕ) = A sin(ω0n+ ϕ)
ω0
fs = 1
T
ω0 = Ω0T = 2π f0 ⋅ T
ω = ΩT = 2π f ⋅ T = 2π
f
fs
6145.-
fs
ω = ΩT = 2π f ⋅ T = 2π
f
fs
f = fs
Ω = 2π f = 2π fs = Ωs ω = 2π
f
fs
= 2π
f = 1
2
fs
Ω = 2π f = 2π ⋅
fs
2 = Ωs
2
ω = 2π
f
fs
= π
2π
ω0
2π
ω0
2π f0T = 1
f0T =
T
2π
T0
T
2π
ω0
= 2π
Ω0T =
T0
.3
1.4.1.
a1y1(n) + a2y2(n) = a1T[x1(n)] + a2T[x2(n)] = T[a1x1(n)] + T[a2x2(n)]
T[x(n)] = y(n)
T[x(n− n0)] = y(n− n0)
6145.-
1
2
y(n) = nx(n)
y(n) = x(2n)
1-3
(1) y(n) = x(− n)
(2) y(n) = x(n2)
(3) y(n) = x(n− n0)
1.4.2.
n n
n< 0 h (n) = 0
1-4
∞
∑
n= − ∞
|h (n)| = P < ∞
(1) T[x(n)] = g (n)x(n)
(3) T[x(n)] = 2nx(n)
(2) T[x(n)] = x(n+ 5) + a x(n)