logo资料库

《数字通信》第四版课后答案.pdf

第1页 / 共322页
第2页 / 共322页
第3页 / 共322页
第4页 / 共322页
第5页 / 共322页
第6页 / 共322页
第7页 / 共322页
第8页 / 共322页
资料共322页,剩余部分请下载后查看
chap2.pdf
chap3.pdf
chap4.pdf
chap5.pdf
chap6.pdf
chap7.pdf
chap8.pdf
chap9.pdf
chap10.pdf
chap11.pdf
chap12.pdf
chap13.pdf
chap14.pdf
chap15.pdf
corrections.pdf
CHAPTER 2 3 3 3 3 j=1 P (A1) = P (A2) = P (A3) = P (A4) = j=1 j=1 P (A2, Bj) = 0.05 + 0.03 + 0.09 = 0.17 P (A3, Bj) = 0.05 + 0.12 + 0.14 = 0.31 Problem 2.1 : Hence : 3 j=1 P (Ai, Bj), i = 1, 2, 3, 4 P (Ai) = P (A1, Bj) = 0.1 + 0.08 + 0.13 = 0.31 P (A4, Bj) = 0.11 + 0.04 + 0.06 = 0.21 Similarly : P (B1) = P (B2) = P (B3) = i=1 4 4 4 i=1 j=1 P (Ai, B1) = 0.10 + 0.05 + 0.05 + 0.11 = 0.31 P (Ai, B2) = 0.08 + 0.03 + 0.12 + 0.04 = 0.27 P (Ai, B3) = 0.13 + 0.09 + 0.14 + 0.06 = 0.42 i=1 Problem 2.2 : The relationship holds for n = 2 (2-1-34) : p(x1, x2) = p(x2|x1)p(x1) Suppose it holds for n = k, i.e : p(x1, x2, ..., xk) = p(xk|xk−1, ..., x1)p(xk−1|xk−2, ..., x1) ...p(x1) Then for n = k + 1 : p(x1, x2, ..., xk, xk+1) = p(xk+1|xk, xk−1, ..., x1)p(xk, xk−1..., x1) = p(xk+1|xk, xk−1, ..., x1)p(xk|xk−1, ..., x1)p(xk−1|xk−2, ..., x1) ...p(x1) Hence the relationship holds for n = k + 1, and by induction it holds for any n. 1 课后答案网 www.khdaw.com
Problem 2.3 : Following the same procedure as in example 2-1-1, we prove : y − b a pY (y) = 1|a| pX Problem 2.4 : Relationship (2-1-44) gives : pY (y) =   pX y − b a 1/3   1 3a [(y − b) /a] 2/3 X is a gaussian r.v. with zero mean and unit variance : pX(x) = 1√ Hence : 2π e−x2/2 √ 2π [(y − b) /a] 3a 1 2/3 e− 1 2 ( y−b a )2/3 pdf of Y a=2 b=3 pY (y) = 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 −10 −8 −6 −4 −2 0 y 2 4 6 8 10 Problem 2.5 : (a) Since (Xr, Xi) are statistically independent : pX(xr, xi) = pX(xr)pX(xi) = 1 2πσ2 2 e−(x2 r+x2 i )/2σ2 课后答案网 www.khdaw.com
J = Hence, by (2-1-55) : = (b) Y = AX and X = A−1Y (2πσ2)n/2 e−xx/2σ2 1 pY(yr, yi) = pX((Yr cos φ + Yi sin φ) , (−Yr sin φ + Yi cos φ)) 1 2πσ2 e−(y2 r +y2 i )/2σ2 Also : Yr + jYi = (Xr + Xi)ejφ ⇒ Xr + Xi = (Yr + jYi) e−jφ = Yr cos φ + Yi sin φ + j(−Yr sin φ + Yi cos φ) ⇒ The Jacobian of the above transformation is : Xr = Yr cos φ + Yi sin φ Xi = −Yr sin φ + Yi cos φ ∂Xr ∂Yr ∂Xr ∂Yi ∂Xi ∂Yr ∂Xi ∂Yi = cos φ − sin φ cos φ sin φ = 1 Now, pX(x) = M = σ2I, since they are i.i.d) and J = 1/| det(A)|. Hence : (the covariance matrix M of the random variables x1, ..., xn is pY(y) = 1 (2πσ2)n/2 1 | det(A)|e−y(A−1)A−1y/2σ2 For the pdf’s of X and Y to be identical we require that : | det(A)| = 1 and (A−1) A−1 = I =⇒ A−1 = A Hence, A must be a unitary (orthogonal) matrix . Problem 2.6 : (a) But, ejvY = E ejv n i=1 xi = E ψY (jv) = E ejvxi = n i=1 ejvX = n i=1 E n ψX(ejv) pX(x) = pδ(x − 1) + (1 − p)δ(x) ⇒ ψX(ejv) = 1 + p + pejv ⇒ ψY (jv) = 1 + p + pejv n 3 课后答案网 www.khdaw.com
(b) and E(Y ) = −j dψY (jv) dv |v=0 = −jn(1 − p + pejv)n−1jpejv|v=0 = np E(Y 2) = −d2ψY (jv) d2v |v=0 = − d dv jn(1 − p + pejv)n−1pejv ⇒ E(Y 2) = n2p2 + np(1 − p) v=0 = np + np(n − 1)p Problem 2.7 : ψ(jv1, jv2, jv3, jv4) = E ej(v1x1+v2x2+v3x3+v4x4) E (X1X2X3X4) = (−j)4 ∂4ψ(jv1, jv2, jv3, jv4) ∂v1∂v2∂v3∂v4 |v1=v2=v3=v4=0 From (2-1-151) of the text, and the zero-mean property of the given rv’s : ψ(jv) = e− 1 2 vMv where v = [v1, v2, v3, v4] We obtain the desired result by bringing the exponent to a scalar form and then performing quadruple differentiation. We can simplify the procedure by noting that : , M = [µij] . ∂ψ(jv) ∂vi = −µ ive− 1 2 vMv where µ i = [µi1, µi2, µi3, µi4] . Also note that : ∂µ jv ∂vi = µij = µji Hence : ∂4ψ(jv1, jv2, jv3, jv4) ∂v1∂v2∂v3∂v4 |V=0 = µ12µ34 + µ23µ14 + µ24µ13 Problem 2.8 : For the central chi-square with n degress of freedom : ψ(jv) = 1 (1 − j2vσ2) n/2 4 课后答案网 www.khdaw.com
Now : d2ψ(jv) dψ(jv) dv = jnσ2 (1 − j2vσ2) −2nσ4 (n/2 + 1) (1 − j2vσ2) n/2+2 dv2 = Y = E (Y 2) − [E (Y )] 2 n/2+1 ⇒ E dψ(jv) ⇒ E (Y ) = −j dv = −d2ψ(jv) Y 2 dv2 |v=0 = nσ2 |v=0 = n(n + 2)σ2 The variance is σ2 For the non-central chi-square with n degrees of freedom : = 2nσ4 ψ(jv) = 1 (1 − j2vσ2) n/2 ejvs2/(1−j2vσ2) n where by definition : s2 = i=1 m2 i . dψ(jv) dv = Hence, E (Y ) = −j dψ(jv) jnσ2 (1 − j2vσ2) |v=0 = nσ2 + s2 n/2+1 + ejvs2/(1−j2vσ2) js2 (1 − j2vσ2) n/2+2 dv −nσ4 (n + 2) (1 − j2vσ2) E Y 2 d2ψ(jv) dv2 = Hence, and n/2+2 + −s2(n + 4)σ2 − ns2σ2 (1 − j2vσ2) n/2+3 + −s4 (1 − j2vσ2) = −d2ψ(jv) dv2 σ2 Y = E Y 2 |v=0 = 2nσ4 + 4s2σ2 + nσ2 + s2 − [E (Y )] 2 = 2nσ4 + 4σ2s2 n/2+4 ejvs2/(1−j2vσ2) Problem 2.9 : The Cauchy r.v. has : p(x) = a/π x2+a2 ,−∞ < x < ∞ (a) since p(x) is an even function. ∞ Note that for large x, E (X) = xp(x)dx = 0 ∞ x2 a π dx x2 + a2 x2 E = X 2 −∞ −∞ x2+a2 → 1 (i.e non-zero value). Hence, = ∞, σ2 = ∞ x2p(x)dx = X 2 E ∞ −∞ 5 课后答案网 www.khdaw.com
(b) jvX = ∞ a/π −∞ x2 + a2 ∞ −∞ ejvxdx = ψ(jv) = E a/π (x + ja) (x − ja) ejvxdx This integral can be evaluated by using the residue theorem in complex variable theory. Then, for v ≥ 0 : ψ(jv) = 2πj ψ(jv) = −2πj x=ja a/π x + ja ejvx = e−av a/π x − ja ejvx = eavv x=−ja For v < 0 : Therefore : ψ(jv) = e−a|v| Note: an alternative way to find the characteristic function is to use the Fourier transform relationship between p(x), ψ(jv) and the Fourier pair : e−b|t| ↔ 1 π c c2 + f 2 , c = b/2π, f = 2πv Problem 2.10 : (a) Y = 1 n n i=1 Xi, ψXi(jv) = e−a|v| n ψY (jv) = E ejv 1 n Xi i=1 = n i=1 E ej v n Xi = n i=1 e−a|v|/n n = e−a|v| ψXi(jv/n) = (b) Since ψY (jv) = ψXi(jv) ⇒ pY (y) = pXi(xi) ⇒ pY (y) = (c) As n → ∞, pY (y) = not hold. The reason is that the Cauchy distribution does not have a finite variance. y2+a2 , which is not Gaussian ; hence, the central limit theorem does y2+a2 . a/π a/π Problem 2.11 : We assume that x(t), y(t), z(t) are real-valued stochastic processes. The treatment of complex- valued processes is similar. (a) φzz(τ ) = E {[x(t + τ ) + y(t + τ )] [x(t) + y(t)]} = φxx(τ ) + φxy(τ ) + φyx(τ ) + φyy(τ ) 6 课后答案网 www.khdaw.com
(b) When x(t), y(t) are uncorrelated : φxy(τ ) = E [x(t + τ )y(t)] = E [x(t + τ )] E [y(t)] = mxmy Similarly : Hence : φyx(τ ) = mxmy φzz(τ ) = φxx(τ ) + φyy(τ ) + 2mxmy (c) When x(t), y(t) are uncorrelated and have zero means : φzz(τ ) = φxx(τ ) + φyy(τ ) Problem 2.12 : The power spectral density of the random process x(t) is : ∞ −∞ Φxx(f ) = φxx(τ )e−j2πf τ dτ = N0/2. The power spectral density at the output of the filter will be : Hence, the total power at the output of the filter will be : φyy(τ = 0) = |H(f )|2 N0 2 Φyy(f ) = Φxx(f )|H(f )|2 = ∞ −∞ Φyy(f )df = ∞ −∞ N0 2 |H(f )|2df = N0 2 (2B) = N0B Problem 2.13 : MX = E [(X − mx)(X − mx) ] , X =   , mx is the corresponding vector of mean values.   X1 X2 X3 7 课后答案网 www.khdaw.com
Then : Hence : MY = E [(Y − my)(Y − my) ] = E [A(X − mx)(A(X − mx)) = E [A(X − mx)(X − mx) A ] = AE [(X − mx)(X − mx) ] A = AMxA ] µ11 0 µ11 + µ31 0 4µ22 0 µ11 + µ13 0 µ11 + µ13 + µ31 + µ33   MY =   Problem 2.14 : Y (t) = X 2(t), φxx(τ ) = E [x(t + τ )x(t)] φyy(τ ) = E [y(t + τ )y(t)] = E x2(t + τ )x2(t) Let X1 = X2 = x(t), X3 = X4 = x(t + τ ). Then, from problem 2.7 : E (X1X2X3X4) = E (X1X2) E (X3X4) + E (X1X3) E (X2X4) + E (X1X4) E (X2X3) Hence : φyy(τ ) = φ2 xx(0) + 2φ2 xx(τ ) Problem 2.15 : m m Ω pR(r) = 2 Γ(m) √ We know that : pX(x) = 1 1/ Hence : r2m−1e−mr2/Ω, X = 1√ . m pR 1/ Ω √ x Ω R Ω pX(x) = √ 1 Ω 1/ 2 m Γ(m) Ω √ x 2m−1 Ω √ e−m(x Ω)2/Ω = mmx2m−1e−mx2 2 Γ(m) Problem 2.16 : The transfer function of the filter is : H(f ) = 1/jωC R + 1/jωC = 1 jωRC + 1 = 1 j2πf RC + 1 8 课后答案网 www.khdaw.com
分享到:
收藏