logo资料库

任意四边形上的积分.pdf

第1页 / 共10页
第2页 / 共10页
第3页 / 共10页
第4页 / 共10页
第5页 / 共10页
第6页 / 共10页
第7页 / 共10页
第8页 / 共10页
资料共10页,剩余部分请下载后查看
Numerical integrations over an arbitrary quadrilateral region
Introduction
Formulation of integrals over an arbitrary quadrilateral region
Algorithm and program
Numerical examples
Conclusions
References
Applied Mathematics and Computation 210 (2009) 515–524 Contents lists available at ScienceDirect Applied Mathematics and Computation j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a m c Numerical integrations over an arbitrary quadrilateral region Md. Shafiqul Islam *, M. Alamgir Hossain Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh a r t i c l e i n f o a b s t r a c t Keywords: Double integral Numerical integration Quadrilateral and triangular finite element Gaussian quadrature In this paper, double integrals over an arbitrary quadrilateral are evaluated exploiting finite element method. The physical region is transformed into a standard quadrilateral finite element using the basis functions in local space. Then the standard quadrilateral is subdi- vided into two triangles, and each triangle is further discretized into 4  n2 right isosceles triangles, with area 1 2n2, and thus composite numerical integration is employed. In addition, the affine transformation over each discretized triangle and the use of linearity property of integrals are applied. Finally, each isosceles triangle is transformed into a 2-square finite element to compute new n2 extended symmetric Gauss points and corresponding weight coefficients, where n is the lower order conventional Gauss Legendre quadratures. These new Gauss points and weights are used to compute the double integral. Examples are con- sidered over an arbitrary domain, and rational and irrational integrals which can not be evaluated analytically. Ó 2009 Elsevier Inc. All rights reserved. 1. Introduction Numerical simulation in engineering science and in applied mathematics has become a powerful tool to model the physical phenomena, particularly when analytical solutions are not available and/or are very difficult to obtain. The integrals arising in practical problems are not always simple or polynomial but rational and irrational expressions, in which the quad- rature scheme cannot evaluate exactly [12]. Even there is no order of Gauss quadrature that will evaluate these integrals exactly [9,10]. The integration points have to be increased in order to improve the integration accuracy and it is desirable to make these evaluations by using as few Gauss points as possible, from the point of view of the computational efficiency. Among various numerical techniques, the finite element method (FEM) is probably one of the most widely accepted even for the complex geometries. This advantage is supported by the element wise coordinate transformation from one space to the other space. From the literature review we may realize that a lot of works of numerical integration using Gauss quadrature over tri- angular region has been done [1–8,13], but a limited work is attempted over the quadrilateral region, such as [12]. Rathod [11] presented some analytical formulas for rational integrals over quadrilateral element but it was confined with monomi- als as numerators. For this, a little work has been done in this study to carry out the development of a good numerical inte- gration technique over the arbitrary convex quadrilateral region with the advent of FEM. Very recently, a rigorous and elaborate survey has been reported in the literature [13] by Rathod et al., and they have derived various orders of extended numerical quadrature rules based on classical Gauss Legendre formula. In their work, a transformation has been used from standard triangular surface to a standard 2-square. All the formulations are derived, and all the examples are tested for certain triangular region. In contrast to this study, we use an arbitrary quadrilateral region with convex and straight sides, which is transformed into a standard square finite element by coordinate transformations. * Corresponding author. E-mail address: mdshafiqul@yahoo.com (Md. Shafiqul Islam). 0096-3003/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2009.01.030
516 Md. Shafiqul Islam, M. Alamgir Hossain / Applied Mathematics and Computation 210 (2009) 515–524 Then the standard square is discretized into two triangular regions and each of these standard triangle is discretized into 4  n2 triangles instead of 3  n2 [13]. We then map further each of the standard triangle into the 2-square using standard quadrilateral basis functions, and taking the sum of the discretized triangles. The subsequent formulations are developed by Mathematica instead of C-Language, which can be coded easily. Examples are considered over an arbitrary domain, and a problem of particular domain which is available in the literature. The results, obtained by the present formulations, converge to the exact solutions correct upto 15 decimal places. 2. Formulation of integrals over an arbitrary quadrilateral region The integral of an arbitrary function, f(x, y) over an arbitrary quadrilateral region AQ is given by I ¼ fðx; yÞdydx ¼ AQ fðx; yÞ dxdy: AQ The integral SQ = {(u,v):1 6 u 6 1, 1 6 v 6 1}, shown in Fig. 1, by the changing the coordinates as: is then transformed into an integral over the region of I of Eq. (1) Z Z X 4 i¼1 x ¼ xiQ i and y ¼ Z Z X 4 yiQ i; i¼1 ð1Þ the standard quadrilateral, ð2aÞ ð2bÞ ð3aÞ ð3bÞ where Qi are the bilinear quadrilateral element basis functions in (u,v)-space: Q 1ðu; vÞ ¼ ð1 uÞð1 vÞ=4; Q 2ðu; vÞ ¼ ð1 þ uÞð1 vÞ=4; Q 3ðu; vÞ ¼ ð1 þ uÞð1 þ vÞ=4; Q 4ðu; vÞ ¼ ð1 uÞð1 þ vÞ=4: The corresponding Jacobian [11] is then J1 ¼ oðx; yÞ oðu; vÞ ¼ ox ou oy ov ox ov oy ou ¼ a0 þ a1u þ a2v; where a0 ¼ 1 8 a1 ¼ 1 8 a2 ¼ 1 8 ½ðx4 x2Þðy1 y3Þ þ ðx3 x1Þðy4 y2ފ; ½ðx4 x3Þðy2 y1Þ þ ðx1 x2Þðy4 y3ފ; ½ðx4 x1Þðy2 y3Þ þ ðx3 x2Þðy4 y1ފ: y (3 x , 3 y 3 ) (2 x , 2 y 2 ) ( x , 4 y 4 4) 4)1,1(− v )1,1(3 u )1,1(2 − (1 1 yx 1 , ) x −− 1)1,1( (a) Arbitrary quadrilateral, AQ (b) Standard square element, SQ 4)1,1(− 'T −− 1)1,1( v ''T )1,1(3 u )1,1(2 − Fig. 1. Transformation of arbitrary quadrilateral (AQ) into standard square (SQ), and discretization SQ into two triangles T0 and T00. (c) Discretize SQ into two triangles 'T and ''T
Md. Shafiqul Islam, M. Alamgir Hossain / Applied Mathematics and Computation 210 (2009) 515–524 517 3)1,1(− v ''T )1,1(1 u − )1,1(2 3)1,1(− v 'T −− 1)1,1( u − )1,1(2 Fig. 2. Transformation of T00 into T0. Z Z Now use Eqs. (1)–(3) to obtain, I ¼ fðx; yÞdy dx ¼ AQ SQ fðxðu; vÞ; yðu; vÞÞjJ1j dudv ¼ gðu; vÞ dudv ¼ SQ where, g(u,v) = f(u,v)jJ1j. Now discretize SQ into two triangles T0 and T00, shown in Fig. 1c, then Z Z I ¼ gðu; vÞdudv ¼ SQ gðu; vÞ dudv þ T0 gðu; vÞ dudv; T00 Z Z Z Z Z Z Z Z Z Z 1 1 1 1 gðu; vÞ dudv; ð4Þ ð5Þ where T0 = {(u,v):1 6 v 6 1,1 6 u 6 v} and T00 = {(u,v):1 6 u 6 1,u 6 v 6 1}. T0 = {(u,v):1 6 v 6 1, 1 6 u 6 v}, using simple coordinate transformation as shown in Fig. 2, such that: The second integral of Eq. (5) is then transformed into an integral over the region of the same standard triangle, Z Z Z Z T00 gðu; vÞdudv ¼ Z Z Then Eq. (5) leads us T0 gðv;uÞ dudv: Z Z I ¼ gðu; vÞdudv ¼ where,F(u,v) = g(u,v) + g(v,u). SQ ½gðu; vÞ þ gðv;uފdudv ¼ T0 standard quadrilateral basis functions, Qi(n,g), as shown in Fig. 3. Z Z 1 v 1 1 Fðu; vÞdudv; ð6Þ ð7Þ The integral I of Eq. (7) can be further transformed into an integral over the standard 2-square, {(n,g):1 6 n,g 6 1} using ð8aÞ ð8bÞ ð8cÞ Assume that 4 X X i¼1 4 i¼1 u ¼ v ¼ and uiQ iðn; gÞ ¼ 1 4 v iQ iðn; gÞ ¼ 1 4 ð1 þ 3n g ngÞ ¼ uðn; gÞ; ð1 n þ 3g ngÞ ¼ vðn; gÞ; J2 ¼ ou on ov og ou og ov on ¼ 1 4 ð2 n gÞ: Notice that J1 depends on the vertices of the given arbitrary quadrilateral region, but J2 is fixed. 4)1,1( − v )0,0(3 u −− 1)1,1( − )1,1(2 (a) Standard triangle, ST 4)1,1(− η )1,1(3 ξ − )1,1(2 −− 1)1,1( (b) Standard square, SQ Fig. 3. Transformation of standard triangle ST into 2-square SQ. (a) Standard triangle, ST. (b) Standard square, SQ.
518 Md. Shafiqul Islam, M. Alamgir Hossain / Applied Mathematics and Computation 210 (2009) 515–524 1)2,1( − y )4,1(4 )3,3(3 1R )1,2(2 x Then the Eq. (7) reduces to 1 1 1 1 Fðuðn; gÞ; vðn; gÞÞjJ2jdndg  1 1 4 4 ð1 þ 3n g ngÞ; F Fig. 4. Quadrilateral region R1.  ð1 n þ 3g ngÞ  1 4 ð2 n gÞdndg: ð9Þ Now Eq. (9) represents an integral over the standard 2-square region: {(n,g):1 6 n,g 6 1}. Hence using conventional Gauss Legendre quadrature rule for the integral I of Eq. (9), we have ð2 gj niÞwiwj  F 1 4 ð1 þ 3ni gj nigjÞ; 1 4  1 4  ð1 ni þ 3gj nigjÞ ; Z Z Z Z 1 1 1 1 I ¼ ¼ X s X s i¼1 j¼1 I ¼ where (ni,gj) are Gaussian points in the (n,g) directions of order s, and wi, wj are the corresponding weight coefficients [4]. We can write Eq. (10) as: ð1 þ 3ni gj nigjÞ; k ¼ 1 y0 4 ð1 ni þ 3gj nigjÞ; The weighting coefficients c0 kÞ of various order can be now easily computed from Eq. (11). k and sampling points ðx0 k; y0 k and y0 k; x0 Using the given program in Mathematica, the outputs of c0 Now we discretize ST = {(u,v):1 6 v 6 1,1 6 u 6 v} in (u,v)-space of Eq. (7) into 4(n  n) = 4n2 right isosceles triangle, k for s = 2, 3, 4, 5, 6,7 are given in Table 1. each Ti of area 1/(2n2) [13]. Then Eq. (7) reduces to I ¼ Fðu; vÞ dudv: ð12Þ Since each Ti is to be transformed again into a standard triangle, and using composite integration rule [13] we can obtain the following: I ¼ 1 4n2 kHðx0 c0 X ð13Þ N¼ss X N¼ss I ¼ kFðx0 c0 kÞ; k; y0 k can be written in the form: where c0 k¼1 k and y0 ð2 ni gjÞwiwj; k; x0 k ¼ 1 c0 4 k ¼ 1 x0 4 where k = 1,2, . . ., N, and i, j = 1,2, . . ., s Z Z X 4ðnnÞ i¼1 Ti k¼1 kÞ; k; y0  k þ 2ði nÞ þ 1 x0  x0 X X j¼0 2n2i 2n k þ 2ði nÞ þ 1 F ; 2n1i F 2n1 X X i¼0 þ 2n2 2n i¼0 j¼0  k þ 2ðj nÞ þ 1 y0 2n k þ 2ðj nÞ þ 1 y0 ; 2n  ; Hðx0 k; y0 kÞ ¼ where and k ¼ 1 c0 4 k ¼ 1 y0 4 k ¼ 1 ð2 np gqÞwpwq; ð1 þ 3np gq npgqÞ; x0 4 ð1 np þ 3gq npgqÞ; ðk ¼ 1; 2; . . .; N; p; q ¼ 1; 2; . . . ; sÞ: ð10Þ ð11aÞ ð11bÞ ð14aÞ ð14bÞ
Md. Shafiqul Islam, M. Alamgir Hossain / Applied Mathematics and Computation 210 (2009) 515–524 519 Table 1 Outputs of c0 k of Eqs. (11) using the given program in the next section. k; x0 k and y0 k 1 2 3 4 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 c0 k Order of Gauss Legendre quadrature rule, s = 2 0.500000000000000 0.211324865405187 0.788675134594813 0.500000000000000 Order of Gauss Legendre quadrature rule, s = 3 0.154320987654321 0.151284361822039 0.034784464623228 0.342542798671788 0.395061728395062 0.151284361822039 0.273857510685414 0.342542798671788 0.154320987654321 Order of Gauss Legendre quadrature rule, s = 4 0.060501496642801 0.083869666513367 0.045307001847492 0.008401460977899 0.142982185338485 0.212646651505347 0.140350821011734 0.045307001847492 0.181544850004359 0.284942481998960 0.212646651505347 0.083869666513367 0.112601532307703 0.181544850004359 0.142982185338485 0.060501496642801 Order of Gauss Legendre quadrature rule, s = 5 0.028067174431214 0.046275406309135 0.036857657161022 0.015744196426143 0.002633266629203 0.067124593690865 0.114542702111995 0.099488780941957 0.052864972328108 0.015744196426143 0.097927415226499 0.172797751608793 0.161817283950617 0.099488780941957 0.036857657161022 0.097655803573857 0.176220431895882 0.172797751608793 0.114542702111995 0.046275406309135 0.053501082233226 0.097655803573857 0.097927415226499 0.067124593690865 0.028067174431214 Order of Gauss Legendre quadrature rule, s = 6 0.014676040844490 0.026712183112376 0.026176910420220 0.016612442896900 0.006278401847429 0.000991080167803 0.035095110260008 0.065074456294084 x0 k 0.744016935856293 0.044658198738520 0.622008467928146 0.410683602522959 0.874596669241483 0.443649167310371 0.012701665379258 0.830947501931112 0.250000000000000 0.330947501931112 0.787298334620741 0.056350832689629 0.674596669241483 0.925747374807601 0.647077355116015 0.283490800681011 0.004820780989426 0.907654989120614 0.561084266085594 0.108906255706834 0.237664467328186 0.884049478270466 0.448887299291690 0.118877821084118 0.554040000062894 0.865957092583479 0.362894210261269 0.293462366058295 0.796525248380506 0.950889367642309 0.758409434945362 0.476544961484666 0.194680488023970 0.002200555327023 0.942264702861852 0.715982010624261 0.384617327526421 0.053252644428581 0.173030047809011 0.929634884453998 0.653851982579262 0.250000000000000 0.153851982579262 0.429634884453998 0.917005066046144 0.591721954534264 0.115382672473579 0.360956609587106 0.686239721098985 0.908380401265687 0.549294530213163 0.023455038515334 0.502384453182495 0.861470324235019 0.965094665473587 0.824885019554296 0.606455488981548 0.359779268120028 0.141349737547280 0.001140091627990 0.960515083422740 0.801909923278491 y0 k 0.410683602522959 0.044658198738520 0.622008467928146 0.744016935856293 0.674596669241483 0.330947501931112 0.012701665379258 0.056350832689629 0.250000000000000 - 0.443649167310371 0.787298334620741 0.830947501931112 0.874596669241483 0.796525248380506 0.554040000062894 0.237664467328186 0.004820780989426 0.293462366058295 0.118877821084118 0.108906255706834 0.283490800681011 0.362894210261269 0.448887299291690 0.561084266085594 0.647077355116015 0.865957092583479 0.884049478270466 0.907654989120614 0.925747374807600 0.861470324235019 0.686239721098985 0.429634884453998 0.173030047809011 0.002200555327023 0.502384453182495 0.360956609587106 0.153851982579262 0.053252644428581 0.194680488023970 0.023455038515334 0.115382672473579 0.250000000000000 0.384617327526421 0.476544961484666 0.549294530213163 0.591721954534264 0.653851982579262 0.715982010624261 0.758409434945362 0.908380401265687 0.917005066046144 0.929634884453998 0.942264702861852 0.950889367642309 0.899844362932718 0.768793881115121 0.564633211304801 0.334071059999927 0.129910390189607 0.001140091627990 0.633163817246677 0.520508849654039 (continued on next page)
520 Md. Shafiqul Islam, M. Alamgir Hossain / Applied Mathematics and Computation 210 (2009) 515–524 Table 1 (continued) k 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 c0 k 0.066568810067974 0.046428710417516 0.022046614973247 0.006278401847429 0.053988206897587 0.102236557019614 0.109471725083648 0.083349671145065 0.046428710417516 0.016612442896900 0.063552674420906 0.122376656670072 0.135593779022232 0.109471725083648 0.066568810067974 0.026176910420220 0.055528891524955 0.108102297614921 0.122376656670072 0.102236557019614 0.065074456294084 0.026712183112376 0.028361001521177 0.055528891524955 0.063552674420906 0.053988206897587 0.035095110260008 0.014676040844490 Order of Gauss Legendre quadrature rule, s = 7 0.008383178231877 0.016229336623041 0.018005727931648 0.014218420393005 0.007972981898571 0.002801080689151 0.000426637441423 0.019988306531199 0.039117553014085 0.044437151163993 0.036780461704774 0.022765035551479 0.010110667549803 0.002801080689151 0.031435523240266 0.062362772594912 0.072897093734371 0.063602544468903 0.043312161692773 0.022765035551479 0.007972981898571 0.039901010364923 0.080124975391153 0.095986831742216 0.087344939608496 0.063602544468903 0.036780461704774 0.014218420393005 0.041468269273342 0.084034888207426 0.102482025775969 0.095986831742216 0.072897093734371 0.044437151163993 0.018005727931648 0.033416562465088 0.068124438478366 0.084034888207426 0.080124975391153 0.062362772594912 0.039117553014085 0.016229336623041 x0 k 0.554822424771676 0.275782268461456 0.028694769954641 0.129910390189607 0.953380653041526 0.766117524963210 0.474384407091445 0.144925185950153 0.146807931921612 0.334071059999927 0.945323618263202 0.725696554736187 0.383544372033350 0.002853965074949 0.345006147777786 0.564633211304801 0.938189187881988 0.689904156420906 0.303106354353119 0.133711047586252 0.520508849654039 0.768793881115121 0.933609605831142 0.666929060145101 0.251473290143247 0.217708047244823 0.633163817246677 0.899844362932718 0.973906455024851 0.867477088409913 0.695363130529180 0.487276978085690 0.279190825642200 0.107076867761467 0.000647501146528 0.971265451781595 0.854064060795283 0.664529950865235 0.435382796399849 0.206235641934462 0.016701532004414 0.100499858981898 0.966994511011860 0.832372967976233 0.614667579653261 0.351461287844349 0.088254996035437 0.129450392287535 0.264071935323162 0.961830934257069 0.806148389199546 0.554383863533048 0.250000000000000 0.054383863533048 0.306148389199546 0.461830934257069 0.956667357502278 0.779923810422858 0.494100147412834 0.148538712155651 0.197022723101533 0.482846386111557 0.659589933190977 0.952396416732544 0.758232717603808 - 0.444237776200861 0.064617203600152 0.315003369000558 0.628998310403505 0.823162009532241 y0 k 0.345006147777786 0.146807931921612 0.028694769954641 0.141349737547280 0.217708047244823 0.133711047586252 0.002853965074949 0.144925185950153 0.275782268461456 0.359779268120028 0.251473290143247 0.303106354353119 0.383544372033350 0.474384407091445 0.554822424771676 0.606455488981548 0.666929060145101 0.689904156420906 0.725696554736187 0.766117524963210 0.801909923278491 0.824885019554296 0.933609605831142 0.938189187881988 0.945323618263202 0.953380653041526 0.960515083422740 0.965094665473587 0.924309369660667 0.823162009532241 0.659589933190977 0.461830934257069 0.264071935323162 0.100499858981898 0.000647501146528 0.719373646160558 0.628998310403505 0.482846386111557 0.306148389199546 0.129450392287535 0.016701532004414 0.107076867761467 0.387958552708296 0.315003369000558 0.197022723101533 0.054383863533048 0.088254996035437 0.206235641934462 0.279190825642200 0.012723021914310 0.064617203600152 0.148538712155651 0.250000000000000 0.351461287844349 - 0.435382796399849 0.487276978085690 0.413404596536916 0.444237776200861 0.494100147412834 0.554383863533048 0.614667579653261 0.664529950865235 0.695363130529179 0.744819689989179 0.758232717603808 - 0.779923810422858 0.806148389199546 0.832372967976233 0.854064060795283 0.867477088409913
Md. Shafiqul Islam, M. Alamgir Hossain / Applied Mathematics and Computation 210 (2009) 515–524 521 Table 1 (continued) k 43 44 45 46 47 48 49 c0 k 0.016339719022330 0.033416562465088 0.041468269273342 0.039901010364923 0.031435523240266 0.019988306531199 0.008383178231877 3. Algorithm and program x0 k 0.949755413489287 0.744819689989179 0.413404596536916 0.012723021914310 0.387958552708296 0.719373646160558 0.924309369660667 y0 k 0.949755413489287 0.952396416732544 0.956667357502278 0.961830934257069 0.966994511011860 0.971265451781595 0.973906455024851 Now we give an algorithm and the corresponding Mathematica program of the formulation of the above results in the following: Algorithm. Step 1: Input (conventional) Gauss Legendre quadrature rule of order s. Step 2: Set up a subalgorithm for generating new weighting coefficients c0 k and sampling points ðx0 k; y0 kÞ to be called STrian- gle(s) that accepts as input the order of Gauss Legendre quadrature rule s  s, and defined by the following: For i = 1,2,3,. . . , s For j = 1,2,3,. . . , s Set k = i + (s j)s Set the Eq. (11b) Step 3: Call subprogram STriangle(s). Step 4: Input the value of n then T will be discretized into 4  n2 subtriangles Ti. Step 5: Set F(u,v) = f(u,v) + f(v,u). Step 6: For m = 1,2,3,. . . , n do steps 7 and 8. Step 7: For k = 1,2,3,. . . , s2 Set the Eqs. (14) Step 8: Set the Eq. (13) Step 9: Output for m = 1,2,3,. . . , n, the results of the required double integral using 4  m2 subtriangles. Mathematica program < NumericalMath ‘GaussianQuadrature’ STriangle[s0_]:¼Module[{s=s0}, C1 = Table[0,{i, 1, s2}]; X1 = Table[0,{i, 1, s2}]; Y1 = Table[{0, i, 1, s2}]; XI = Table[0,{i, 1, s}]; WI = Table[0,{i, 1, s}]; GQ = GaussianQuadratureWeights [s,1, 1]; Do [{XIsit = GQsi, 1t; For [i = 1, i 6 s, i++, For[j = 1, j 6 s, j++, k = i + (s j) s; WIsit = GQsi, 2t;}, {i, 1, s}]; C1 skt ¼ 2XI sitXI sjt WI sitWI sjt; X1 skt ¼ 1þ3XI sitXI sjtXI sitXI sjt ; Y1 skt ¼ 1XI sitþ3XI sjtXI sitXI sjt ;Š;Š;Š; 4 4 4 s = Input[‘‘Enter the Order of Gauss Legendre Quadrature rule:”]; STriangle[s]; TableForm[Table[{PaddedForm[C1sit,{20, 15}], PaddedForm[X1sit//N,{20, 15}], PaddedForm[Y1sit//N, {20, 15}]}, {i, 1, s2}], TableHeadings -> {None,{”ntntnt” ‘‘Ck”,”ntntnt” ‘‘Xk”, ”ntntnt” ‘‘Yk”}}] (*This generates new weighting coefficients and sampling points*) 208 104 s = Input[”Enter the Order of Gauss Legendre Quadrature rule:”]; STriangle[s] ; c2 ¼ 328125 c1 ¼ 65625 f½x ; y Š :¼ c1x8þc2y9þc3x7y6 d1x9þd2y7þd3 F[x_, y_]:¼f[x, y]+f [-y, -x] H1 = Table[0, {i, 1, 4 s2}]; n = Input[‘‘Enter the value of n then discretise T into 4 n2 triangle:”]; App = Table [0, {i, 1, n}]; ; c3 ¼ 239062 ; (*Example 2 *) ; d1 ¼ 1; d2 ¼ 125 ; d3 ¼ 175 4 ; 208 4
522 Md. Shafiqul Islam, M. Alamgir Hossain / Applied Mathematics and Computation 210 (2009) 515–524 Table 2 Evaluation of integrals with present formulation. 4  n2 I1 I2 I3 4  12 4  22 4  32 4  42 4  52 4  62 4  72 4  82 4  92 4  102 4  12 4  22 4  32 4  42 4  52 4  62 4  72 4  82 4  92 4  102 4  12 4  22 4  32 4  42 4  52 4  62 4  72 4  82 4  92 4  102 4  12 4  22 4  32 4  42 4  52 4  62 4  72 4  82 4  92 4  102 4  12 4  22 4  32 4  42 4  52 4  62 4  72 4  82 4  92 4  102 4  12 4  22 4  32 4  42 4  52 4  62 4  72 4  82 4  92 4  102 Conventional Gauss Legendre quadrature rule, s = 2 3.548632768806294 3.549529431843940 3.549595019797304 3.549607123418959 3.549610565443150 3.549611827770161 3.549612375533267 3.549612643456137 3.549612786789801 3.549612868999844 7.214372270294989 14.766944004609170 17.750257035191130 19.070684778341630 19.741189954099270 20.116746242388630 20.342199117184680 20.484773675355270 20.578713103462840 20.642713389041600 Conventional Gauss Legendre quadrature rule, s = 3 3.549576986770514 3.549611923279893 3.549612907382378 3.549613003510714 3.549613020391390 3.549613024587089 3.549613025900934 3.549613026386182 3.549613026589042 3.549613026682440 14.991195582852550 19.267674833364320 20.238201270672950 20.562029516588160 20.693999549518530 20.755006700820120 20.785863805737210 20.802577184929070 20.812134862867130 20.817848407116390 Conventional Gauss Legendre quadrature rule, s = 4 3.549611375919784 3.549613007180398 3.549613025681180 3.549613026658277 3.549613026765570 3.549613026783790 3.549613026787929 3.549613026789089 3.549613026789468 3.549613026789609 18.644834842838010 20.426445648571700 20.714072045679120 20.787746094199740 20.811776994488120 20.820951110531610 20.824870465865810 20.826694184618200 20.827602140250910 20.828079820693800 Conventional Gauss Legendre quadrature rule, s = 5 3.549612941962180 3.549613026386345 3.549613026777556 3.549613026788828 3.549613026789607 3.549613026789697 3.549613026789713 3.549613026789717 3.549613026789718 3.549613026789717 20.001548496386720 20.724196221428660 20.806304854241970 20.822364616979130 20.826571851647100 20.827902601602610 20.828384024624050 20.828576865317250 20.828660594976600 20.828699421589810 Conventional Gauss Legendre quadrature rule, s = 6 3.549613022130449 3.549613026780732 3.549613026789571 3.549613026789710 3.549613026789717 3.549613026789717 3.549613026789717 3.549613026789717 3.549613026789717 3.549613026789717 20.511614603806180 20.801457772983100 20.824307659861010 20.827736127791060 20.828459142086950 20.828648914435710 20.828707120508940 20.828727210885140 20.828734824429590 20.828737938333210 Conventional Gauss Legendre quadrature rule, s = 7 3.549613026522518 3.549613026789507 3.549613026789714 3.549613026789716 3.549613026789717 3.549613026789714 3.549613026789715 3.549613026789716 3.549613026789717 3.549613026789717 20.707379944169620 20.821572098014380 20.827856159815450 20.828580466438830 20.828703557317910 20.828730388598700 20.828737369893600 20.828739447190620 20.828740134528660 20.828740382547010 39.039369918293960 42.249315069481930 42.478241857014860 42.523495055881930 42.536817745455030 42.541489797664640 42.543435316001850 42.544391244354330 42.544908789955560 42.545204163254480 42.532773862921690 42.542047167997930 42.545962400140290 42.545783237660850 42.545767429494530 42.545763666116570 42.545765986383130 42.545766488461880 42.545766388104710 42.545766345330780 42.537308152449840 42.546002670540940 42.545751923101100 42.545764602144810 42.545766495864450 42.545766532601160 42.545766385928470 42.545766357126450 42.545766367740910 42.545766374439800 42.543998316928880 42.545752203430210 42.545766387349290 42.545766434803810 42.545766394596410 42.545766356065610 42.545766376187230 42.545766380359400 42.545766378911800 42.545766377750830 42.544051506775350 42.545768789991790 42.545766356604670 42.545766313841630 42.545766369364530 42.545766381803220 42.545766378690400 42.545766376692580 42.545766376550800 42.545766376774700 42.545475984252790 42.545763813053390 42.545766493516090 42.545766393134410 42.545766374248210 42.545766376430670 42.545766376617350 42.545766376969660 42.545766377156990 42.545766377131950
分享到:
收藏