logo资料库

matlab 流形学习LLE算法.doc

第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
资料共4页,全文预览结束
LLE 算法代码 % LLE ALGORITHM (using K nearest neighbors) % % [Y] = lle(X,K,dmax) % % X = data as D x N matrix (D = dimensionality, N = #points) %(D = 点的维数, N = 点数) % K = number of neighbors(领域点的个数) % dmax = max embedding dimensionality(最大嵌入维数) % Y = embedding as dmax x N matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % function [Y] = lle(X,K,d) [D,N] = size(X); %D 是矩阵的行数,N 是矩阵的列数 fprintf(1,'LLE running on %d points in %d dimensions\n',N,D); % STEP1: COMPUTE PAIRWISE DISTANCES & FIND NEIGHBORS %寻找邻居数据点 fprintf(1,'-->Finding %d nearest neighbours.\n',K); X2 = sum(X.^2,1); %矩阵 X 中的每个元素以 2 为指数求幂值,并且竖向相加 %if two point X=(x1,x2),Y=(y1,y2) %than the distance between X and Y is sqtr((x1-y1) .^2+ (x2-y2).^2) distance = repmat(X2,N,1)+repmat(X2',1,N)-2*X'*X;
%repmat 就是在行方向把 X2 复制成 N 份,列方向为 1 份 [sorted,index] = sort(distance); %sort 是对矩阵排序,sorted 是返回对每列排序的结果,index 是返回 排 %序后矩阵中每个数在矩阵未排序前每列中的位置 neighborhood = index(2:(1+K),:); %计算 neighborhood(看 distance 定义理解)的时候,要记住 X 中 N 代表的是点数,D 代 %表每个点得维数,把 neighborhood 进行 sort 后会找出每个点(用 X 的每列表示)最近的%K 个列 % STEP2: SOLVE FOR RECONSTRUCTION WEIGHTS %计算重构权 fprintf(1,'-->Solving for reconstruction weights.\n'); if(K>D) fprintf(1,' [note: K>D; regularization will be used]\n'); tol=1e-3; % regularlizer in case constrained fits are ill conditioned else tol=0; end W = zeros(K,N); for ii=1:N z = X(:,neighborhood(:,ii))-repmat(X(:,ii),1,K); % shift ith pt to origin C = z'*z; % local covariance C = C + eye(K,K)*tol*trace(C); % regularlization (K>D) W(:,ii) = C\ones(K,1); W(:,ii) = W(:,ii)/sum(W(:,ii)); % solve Cw=1 % enforce
sum(w)=1 end; % STEP 3: COMPUTE EMBEDDING FROM EIGENVECTS OF COST MATRIX M=(I-W)'(I-W) %计算矩阵 M=(I-W)'(I-W)的最小 d 个非零特征值对应的特征向量 fprintf(1,'-->Computing embedding.\n'); % M=eye(N,N); % use a sparse matrix with storage for 4KN nonzero elements M = sparse(1:N,1:N,ones(1,N),N,N,4*K*N); for ii=1:N w = W(:,ii); jj = neighborhood(:,ii); M(ii,jj) = M(ii,jj) - w'; M(jj,ii) = M(jj,ii) - w; M(jj,jj) = M(jj,jj) + w*w'; end; % CALCULATION OF EMBEDDING options.disp = 0; options.isreal = 1; options.issym = 1; [Y,eigenvals] = eigs(M,d+1,0,options); %[Y,eigenvals] = jdqr(M,d+1);%change in using JQDR func Y = Y(:,2:d+1)'*sqrt(N); % bottom evect is [1,1,1,1...] with eval 0 fprintf(1,'Done.\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % other possible regularizers for K>D
% C = C + tol*diag(diag(C)); regularlization % C = C + eye(K,K)*tol*trace(C)*K; regularlization % %
分享到:
收藏