Machine Learning Yearning is a
deeplearning.ai project.
© 2018 Andrew Ng. All Rights Reserved.
Page 2
Machine Learning Yearning-Draft
Andrew Ng
Table of Contents
1 Why Machine Learning Strategy
2 How to use this book to help your team
3 Prerequisites and Notation
4 Scale drives machine learning progress
5 Your development and test sets
6 Your dev and test sets should come from the same distribution
7 How large do the dev/test sets need to be?
8 Establish a single-number evaluation metric for your team to optimize
9 Optimizing and satisficing metrics
10 Having a dev set and metric speeds up iterations
11 When to change dev/test sets and metrics
12 Takeaways: Setting up development and test sets
13 Build your first system quickly, then iterate
14 Error analysis: Look at dev set examples to evaluate ideas
15 Evaluating multiple ideas in parallel during error analysis
16 Cleaning up mislabeled dev and test set examples
17 If you have a large dev set, split it into two subsets, only one of which you look at
18 How big should the Eyeball and Blackbox dev sets be?
19 Takeaways: Basic error analysis
20 Bias and Variance: The two big sources of error
21 Examples of Bias and Variance
22 Comparing to the optimal error rate
23 Addressing Bias and Variance
24 Bias vs. Variance tradeoff
25 Techniques for reducing avoidable bias
Page 3
Machine Learning Yearning-Draft
Andrew Ng
26 Error analysis on the training set
27 Techniques for reducing variance
28 Diagnosing bias and variance: Learning curves
29 Plotting training error
30 Interpreting learning curves: High bias
31 Interpreting learning curves: Other cases
32 Plotting learning curves
33 Why we compare to human-level performance
34 How to define human-level performance
35 Surpassing human-level performance
36 When you should train and test on different distributions
37 How to decide whether to use all your data
38 How to decide whether to include inconsistent data
39 Weighting data
40 Generalizing from the training set to the dev set
41 Addressing Bias and Variance
42 Addressing data mismatch
43 Artificial data synthesis
44 The Optimization Verification test
45 General form of Optimization Verification test
46 Reinforcement learning example
47 The rise of end-to-end learning
48 More end-to-end learning examples
49 Pros and cons of end-to-end learning
50 Learned sub-components
51 Directly learning rich outputs
Page 4
Machine Learning Yearning-Draft
Andrew Ng
52 Error Analysis by Parts
53 Beyond supervised learning: What’s next?
54 Building a superhero team - Get your teammates to read this
55 Big picture
56 Credits
Page 5
Machine Learning Yearning-Draft
Andrew Ng
1 Why Machine Learning Strategy
Machine learning is the foundation of countless important applications, including web
search, email anti-spam, speech recognition, product recommendations, and more. I assume
that you or your team is working on a machine learning application, and that you want to
make rapid progress. This book will help you do so.
Example: Building a cat picture startup
Say you’re building a startup that will provide an endless stream of cat pictures to cat lovers.
You use a neural network to build a computer vision system for detecting cats in pictures.
But tragically, your learning algorithm’s accuracy is not yet good enough. You are under
tremendous pressure to improve your cat detector. What do you do?
Your team has a lot of ideas, such as:
• Get more data: Collect more pictures of cats.
• Collect a more diverse training set. For example, pictures of cats in unusual positions; cats
with unusual coloration; pictures shot with a variety of camera settings; ….
• Train the algorithm longer, by running more gradient descent iterations.
• Try a bigger neural network, with more layers/hidden units/parameters.
Page 6
Machine Learning Yearning-Draft
Andrew Ng
• Try a smaller neural network.
• Try adding regularization (such as L2 regularization).
• Change the neural network architecture (activation function, number of hidden units, etc.)
• …
If you choose well among these possible directions, you’ll build the leading cat picture
platform, and lead your company to success. If you choose poorly, you might waste months.
How do you proceed?
This book will tell you how. Most machine learning problems leave clues that tell you what’s
useful to try, and what’s not useful to try. Learning to read those clues will save you months
or years of development time.
Page 7
Machine Learning Yearning-Draft
Andrew Ng
2 How to use this book to help your team
After finishing this book, you will have a deep understanding of how to set technical
direction for a machine learning project.
But your teammates might not understand why you’re recommending a particular direction.
Perhaps you want your team to define a single-number evaluation metric, but they aren’t
convinced. How do you persuade them?
That’s why I made the chapters short: So that you can print them out and get your
teammates to read just the 1-2 pages you need them to know.
A few changes in prioritization can have a huge effect on your team’s productivity. By helping
your team with a few such changes, I hope that you can become the superhero of your team!
Page 8
Machine Learning Yearning-Draft
Andrew Ng