logo资料库

Machine Learning Yearning完整版.pdf

第1页 / 共104页
第2页 / 共104页
第3页 / 共104页
第4页 / 共104页
第5页 / 共104页
第6页 / 共104页
第7页 / 共104页
第8页 / 共104页
资料共104页,剩余部分请下载后查看
Machine Learning Yearning is a deeplearning.ai project. © 2018 Andrew Ng. All Rights Reserved. Page 2 Machine Learning Yearning-Draft Andrew Ng
Table of Contents 1 Why Machine Learning Strategy 2 How to use this book to help your team 3 Prerequisites and Notation 4 Scale drives machine learning progress 5 Your development and test sets 6 Your dev and test sets should come from the same distribution 7 How large do the dev/test sets need to be? 8 Establish a single-number evaluation metric for your team to optimize 9 Optimizing and satisficing metrics 10 Having a dev set and metric speeds up iterations 11 When to change dev/test sets and metrics 12 Takeaways: Setting up development and test sets 13 Build your first system quickly, then iterate 14 Error analysis: Look at dev set examples to evaluate ideas 15 Evaluating multiple ideas in parallel during error analysis 16 Cleaning up mislabeled dev and test set examples 17 If you have a large dev set, split it into two subsets, only one of which you look at 18 How big should the Eyeball and Blackbox dev sets be? 19 Takeaways: Basic error analysis 20 Bias and Variance: The two big sources of error 21 Examples of Bias and Variance 22 Comparing to the optimal error rate 23 Addressing Bias and Variance 24 Bias vs. Variance tradeoff 25 Techniques for reducing avoidable bias Page 3 Machine Learning Yearning-Draft Andrew Ng
26 Error analysis on the training set 27 Techniques for reducing variance 28 Diagnosing bias and variance: Learning curves 29 Plotting training error 30 Interpreting learning curves: High bias 31 Interpreting learning curves: Other cases 32 Plotting learning curves 33 Why we compare to human-level performance 34 How to define human-level performance 35 Surpassing human-level performance 36 When you should train and test on different distributions 37 How to decide whether to use all your data 38 How to decide whether to include inconsistent data 39 Weighting data 40 Generalizing from the training set to the dev set 41 Addressing Bias and Variance 42 Addressing data mismatch 43 Artificial data synthesis 44 The Optimization Verification test 45 General form of Optimization Verification test 46 Reinforcement learning example 47 The rise of end-to-end learning 48 More end-to-end learning examples 49 Pros and cons of end-to-end learning 50 Learned sub-components 51 Directly learning rich outputs Page 4 Machine Learning Yearning-Draft Andrew Ng
52 Error Analysis by Parts 53 Beyond supervised learning: What’s next? 54 Building a superhero team - Get your teammates to read this 55 Big picture 56 Credits       Page 5 Machine Learning Yearning-Draft Andrew Ng
1 Why Machine Learning Strategy Machine learning is the foundation of countless important applications, including web search, email anti-spam, speech recognition, product recommendations, and more. I assume that you or your team is working on a machine learning application, and that you want to make rapid progress. This book will help you do so. Example: Building a cat picture startup Say you’re building a startup that will provide an endless stream of cat pictures to cat lovers. You use a neural network to build a computer vision system for detecting cats in pictures. But tragically, your learning algorithm’s accuracy is not yet good enough. You are under tremendous pressure to improve your cat detector. What do you do? Your team has a lot of ideas, such as: • Get more data: Collect more pictures of cats. • Collect a more diverse training set. For example, pictures of cats in unusual positions; cats with unusual coloration; pictures shot with a variety of camera settings; …. • Train the algorithm longer, by running more gradient descent iterations. • Try a bigger neural network, with more layers/hidden units/parameters. Page 6 Machine Learning Yearning-Draft Andrew Ng
• Try a smaller neural network. • Try adding regularization (such as L2 regularization). • Change the neural network architecture (activation function, number of hidden units, etc.) • … If you choose well among these possible directions, you’ll build the leading cat picture platform, and lead your company to success. If you choose poorly, you might waste months. How do you proceed? This book will tell you how. Most machine learning problems leave clues that tell you what’s useful to try, and what’s not useful to try. Learning to read those clues will save you months or years of development time.         Page 7 Machine Learning Yearning-Draft Andrew Ng
  2 How to use this book to help your team After finishing this book, you will have a deep understanding of how to set technical direction for a machine learning project. But your teammates might not understand why you’re recommending a particular direction. Perhaps you want your team to define a single-number evaluation metric, but they aren’t convinced. How do you persuade them? That’s why I made the chapters short: So that you can print them out and get your teammates to read just the 1-2 pages you need them to know. A few changes in prioritization can have a huge effect on your team’s productivity. By helping your team with a few such changes, I hope that you can become the superhero of your team!   Page 8 Machine Learning Yearning-Draft Andrew Ng
分享到:
收藏