Keras 可视化步骤:
基于 Anaconda、pycharm
1) 安装 graphviz
打开 anaconda 进入终端,键入 pip install graphviz
官网下载 http://www.graphviz.org/,
建议下载 stable 2.38 Windows install packages
建议下载 graphviz-2.38.zip
下载后直接解压缩,
配置 path
我的电脑右键>属性>高级系统设置>环境变量>path 编辑>输入 graphviz 解压缩的地址
2) 安装 pydot
打开 anaconda 进入终端,键入 pip install pydot
3) 安装 pydot_ng
打开 anaconda 进入终端,键入 pip install pydot_ng
4) 测试
程序:
from keras.models import Sequential
from keras.layers import LSTM, Dense
#这一行新加的,用于导入绘图包
from keras.utils.vis_utils import plot_model
import numpy as np
data_dim = 16
timesteps = 8
num_classes = 10
# expected input data shape: (batch_size, timesteps, data_dim)
model = Sequential()
model.add(LSTM(32, return_sequences=True,
input_shape=(timesteps, data_dim))) # returns a
sequence of vectors of dimension 32
model.add(LSTM(32, return_sequences=True)) # returns a sequence of
vectors of dimension 32
model.add(LSTM(32)) # return a single vector of dimension 32
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
# Generate dummy training data
x_train = np.random.random((1000, timesteps, data_dim))
y_train = np.random.random((1000, num_classes))
# Generate dummy validation data
x_val = np.random.random((100, timesteps, data_dim))
y_val = np.random.random((100, num_classes))
model.fit(x_train, y_train,
batch_size=64, epochs=1,
validation_data=(x_val, y_val))
#这一行新加的,用于绘图
plot_model(model, to_file='model1.png',show_shapes=True)
打开 model1 图片文件,显示