INTERNATIONAL EDITION
Introduction to
MathelYlatical Statistics
Sixth Edition
Hogg · McKean · Craig
Introduction
to
Mathematical Statistics
Sixth Edition
Robert V. Hogg
University of Iowa
Joseph W. McKean
Western Michigan University
Allen T. Craig
Late Professor of Statistics
University of Iowa
Pearson Education International
If you purchased this book within the United States or Canada, you should be aware
that it has been wrongly imported without the approval of the Publisher or Author.
Executive Acquisitions Editor: George Lobell
Executive Editor-in-Chief: Sally Yagan
Vice President/Director of Production and Manufacturing: David W. Riccardi
Production Editor: Bayani Mendoza de Leon
Senior Managing Editor: Linda Mihatov Behrens
Executive Managing Editor: Kathleen Schiaparelli
Assistant Manufacturing Manager/Buyer: Michael Bell
Manufacturing Manager: Trudy Pis ciotti
Marketing Manager: Halee Dinsey
Marketing Assistant: Rachael Beckman
Art Director: Jayne Conte
Cover Designer: Bruce Kenselaar
Art Editor: Thomas Benfatti
Editorial Assistant: Jennifer Brody
Cover Image: Tun shell (Tonna galea). David Roberts/Science Photo Librory/Photo
Researchers, Inc.
©2005, 1995, 1978, 1970, 1965, 1958 Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, NJ 07458
All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher.
Pearson Prentice Hall® is a trademark of Pearson Education, Inc.
Printed in the United States of America
109876543
ISBN: 0-13-122605-3
Pearson Education, Ltd., London
Pearson Education Australia PTY. Limited, Sydney
Pearson Education Singapore, Pte., Ltd
Pearson Education North Asia Ltd, Hong Kong
Pearson Education Canada, Ltd., Toronto
Pearson Education de Mexico, S.A. de C.V.
Pearson Education - Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd
Pearson Education, Upper Saddle River, New Jersey
To Ann and to Marge
Contents
Preface
1 Probability and Distributions
1.1
Introduction . . . . . . . . . .
1.2 Set Theory . . . . . . . . . .
1.3 The Probability Set Function
1.4 Conditional Probability and Independence.
1.5 Random Variables
1.6 Discrete Random Variables ..
1.6.1 Transformations ....
1. 7 Continuous Random Variables.
1. 7.1 Transformations ....
. . . . .
1.8 Expectation of a Random Variable
1.9 Some Special Expectations
1.10 Important Inequalities . . . . . . .
2 Multivariate Distributions
2.1 Distributions of Two Random Variables
2.1.1 Expectation . . . . . . . . . . . .
2.2 Transformations: Bivariate Random Variables.
2.3 Conditional Distributions and Expectations
2.4 The Correlation Coefficient
2.5
2.6 Extension to Several Random Variables
. . . . . . .
Independent Random Variables . . . . .
2.6.1
• Variance-Covariance ...
2.7 Transformations: Random Vectors
3 Some Special Distributions
3.1 The Binomial and Related Distributions
3.2 The Poisson Distribution ...
3.3 The r, X2 , and {3 Distributions
3.4 The Normal Distribution ....
3.4.1 Contaminated Normals
3.5 The Multivariate Normal Distribution
v
xi
1
1
3
11
22
33
41
43
45
47
53
59
68
73
73
79
84
93
101
108
115
121
124
133
133
143
149
160
167
171
vi
Contents
3.6
* Applications ...
3.5.1
t and F-Distributions "
3.6.1 The t-distribution
3.6.2 The F-distribution
3.6.3 Student's Theorem
3.7 Mixture Distributions "
4 U nbiasedness, Consistency, and Limiting Distributions
4.1 Expectations of Functions . .
4.2 Convergence in Probability ..
4.3 Convergence in Distribution . .
4.3.1 Bounded in Probability
4.3.2 ~-Method . . . . . . . .
4.3.3 Moment Generating Function Technique .
4.4 Central Limit Theorem . . . . . . . . . . .
* Asymptotics for Multivariate Distributions
4.5
5 Some Elementary Statistical Inferences
5.1 Sampling and Statistics
5.2 Order Statistics . . . . . . . . . . . . . .
5.2.1 Quantiles . . . . . . . . . . . . .
5.2.2 Confidence Intervals of Quantiles
5.3 *Tolerance Limits for Distributions . . .
5.4 More on Confidence Intervals
. . . . . .
5.4.1 Confidence Intervals for Differences in Means
5.4.2 Confidence Interval for Difference in Proportions
Introduction to Hypothesis Testing . . . . . .
5.5
5.6 Additional Comments About Statistical Tests
5.7 Chi-Square Tests . . . . . . . . . . . . . . . .
5.8 The Method of Monte Carlo . . . . . . . . . .
5.8.1 Accept-Reject Generation Algorithm.
5.9 Bootstrap Procedures . . . . . . . . . . . . .
5.9.1 Percentile Bootstrap Confidence Intervals
5.9.2 Bootstrap Testing Procedures .
6 Maximum Likelihood Methods
6.1 Maximum Likelihood Estimation . . . . .
6.2 Rao-Cramer Lower Bound and Efficiency
6.3 Ma.ximum Likelihood Tests ....
6.4 Multiparameter Case: Estimation.
6.5 Multiparameter Case: Testing.
6.6 The EM Algorithm . . . . . . . . .
177
182
182
184
186
189
197
198
203
207
213
214
216
220
226
233
233
238
242
245
250
254
257
260
263
272
278
286
292
297
297
301
311
311
319
333
342
351
359
Contents
7 Sufficiency
7.1 Measures of Quality of Estimators
7.2 A Sufficient Statistic for a Parameter.
7.3 Properties of a Sufficient Statistic. . .
7.4 Completeness and Uniqueness . . . . .
7.5 The Exponential Class of Distributions.
7.6 Functions of a Parameter . . . . . . . .
7.7 The Case of Several Parameters . . . . .
7.8 Minimal Sufficiency and Ancillary Statistics
7.9 Sufficiency, Completeness and Independence.
8 Optimal Tests of Hypotheses
8.1 Most Powerful Tests . . . .
8.2 Uniformly Most Powerful Tests
8.3 Likelihood Ratio Tests . . . . .
8.4 The Sequential Probability Ratio Test
8.5 Minimax and Classification Procedures .
8.5.1 Minimax Procedures
8.5.2 Classification.......
9 Inferences about Normal Models
9.1 Quadratic Forms . . . . . . . . .
9.2 One-way ANOVA . . . . . . . . .
9.3 Noncentral X2 and F Distributions
9.4 Multiple Comparisons
. .
9.5 The Analysis of Variance
9.6 A Regression Problem . .
9.7 A Test of Independence
.
9.8 The Distributions of Certain Quadratic Forms.
9.9 The Independence of Certain Quadratic Forms
vii
367
367
373
380
385
389
394
398
406
411
419
419
429
437
448
455
456
458
463
463
468
475
477
482
488
498
501
508
10 Nonparametric Statistics
10.1 Location Models . . . . . . . . . . . .
10.2 Sample Median and Sign Test . . . . .
10.2.1 Asymptotic Relative Efficiency
10.2.2 Estimating Equations Based on Sign Test
10.2.3 Confidence Interval for the Median.
515
515
518
523
528
529
531
536
539
539
541
10.4.1 Asymptotic Relative Efficiency
545
10.4.2 Estimating Equations Based on the Mann-Whitney-Wilcoxon 547
10.4.3 Confidence Interval for the Shift Parameter I:l. .
547
10.5 General Rank Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
. . . . . . . . . . . . . .
. . . . . . . . . . . . .
10.3 Signed-Rank Wilcoxon. . . . . . . . . . . . . . .
10.3.1 Asymptotic Relative Efficiency . . . . . .
10.3.2 Estimating Equations Based on Signed-rank Wilcoxon
10.3.3 Confidence Interval for the Median .
10.4 Mann-Whitney-Wilcoxon Procedure