logo资料库

DDE延迟微分方程数值算法(常量延迟).pdf

第1页 / 共25页
第2页 / 共25页
第3页 / 共25页
第4页 / 共25页
第5页 / 共25页
第6页 / 共25页
第7页 / 共25页
第8页 / 共25页
资料共25页,剩余部分请下载后查看
Delay Differential Equations
Delay Differential Equations
Analytical Solutions and Stability
Example
History
Solving DDEs in extsc {Matlab}
$T^prime (t) = T(t) - 2,T(t - 1)$
Output of Program
Coding the DDEs
Method of Steps
Propagation of Discontinuities
Discontinuity Tree
Special Discontinuities
Runge--Kutta (RK) Formulas
Continuous Extensions
``Short'' Lags
Solution Structure
Rocking Suitcase
Nested Function for DDEs
Event Location
Nested Function for Events
Program, Part I
Program, Part II
Program, Part III
Output
Delay Differential Equations Part I: Constant Lags L.F. Shampine Department of Mathematics Southern Methodist University Dallas, Texas 75275 shampine@smu.edu www.faculty.smu.edu/shampine
Delay Differential Equations Delay differential equations (DDEs) with constant lags τj > 0 for j = 1, . . . , k have the form y′(t) = f (t, y(t), y(t − τ1), . . . , y(t − τk)) An early model of the El Niño/Southern Oscillation phenomenon with a physical parameter α > 0 is T ′(t) = T (t) − αT (t − τ ) A nonlinear ENSO model with periodic forcing is h′(t) = −a tanh[κ h(t − τ )] + b cos(2π ω t)
Analytical Solutions and Stability Linear, homogeneous, constant-coefficient ODEs have solutions of the form y(t) = eλt. Any root λ of the characteristic equation provides a solution. This polynomial equation has a finite number of roots. The characteristic equation for linear, homogeneous, constant-coefficient DDEs is transcendental. Generally there are infinitely many roots λ. El’sgol’ts and Norkin give asymptotic expressions for these roots. The differential equation is stable if all roots of the characteristic equation satisfy Re(λ) ≤ β < 0. It is unstable if for some root, Re(λ) > 0.
Example Substituting y(t) = eλt into the neutral DDE y′(t) = y′(t − 1) + y(t) − y(t − 1) leads first to λeλt = λeλt−λ + eλt − eλt−λ and then to the characteristic equation (λ − 1)1 − e−λ = 0 The roots are 1 and 2πi n for integer n. cos(2πnt) and sin(2πnt) are solutions for any integer n.
History An initial value y(a) = φ(a) is not enough to define a unique solution of y′(t) = f (t, y(t), y(t − τ1), . . . , y(t − τk)) on an interval a ≤ t ≤ b. We must specify y(t) = φ(t) for t ≤ a so that y(t − τj) is defined when a ≤ t ≤ a + τj. The function φ(t) is called the history of the solution. The Fortran 90 program dde_solver and the two MATLAB programs allow the history argument to be provided as either a constant vector or a function.
Solving DDEs in MATLAB dde23 solves DDEs with constant lags on [a, b]. This is much like solving ODEs with ode23, but • You must input the lags and the history. • The end points must satisfy a < b. • Output is always in the form of a solution structure. • Solution values are available at mesh points as fields in the structure and anywhere in a ≤ t ≤ b using deval.
T ′(t) = T (t) − 2 T (t − 1) function Ex1 lags = 1; tspan = [0 6]; sol1 = dde23(@dde,lags,@history,tspan); sol2 = dde23(@dde,lags,1,tspan); tplot = linspace(0,6,100); T1 = deval(sol1,tplot); T2 = deval(sol2,tplot); tplot = [-1 tplot]; T1 = [1 T1]; T2 = [2 T2]; plot(tplot,T1,tplot,T2,0,1,’o’) %--Subfunctions--------------------- function dydt = dde(t,T,Z) dydt = T - 2*Z; function s = history(t) s = 1 - t;
Output of Program 25 20 15 10 5 0 −5 −10 −1 0 1 2 3 4 5 6
分享到:
收藏