logo资料库

graph_classification.pdf

第1页 / 共33页
第2页 / 共33页
第3页 / 共33页
第4页 / 共33页
第5页 / 共33页
第6页 / 共33页
第7页 / 共33页
第8页 / 共33页
资料共33页,剩余部分请下载后查看
Graph Classification
Classification Outline • Introduction, Overview • Classification using Graphs – Graph classification – Direct Product Kernel • Predictive Toxicology example dataset – Vertex classification – Laplacian Kernel • WEBKB example dataset • Related Works
Example: Molecular Structures Known Toxic Non-toxic BB AA CC DD CC BB AA DD EE Task: predict whether molecules are toxic, given set of known examples Unknown BB CC AA EE CC BB AA DD DD EE FF
Solution: Machine Learning • Computationally discover and/or predict properties of interest of a set of data • Two Flavors: – Unsupervised: discover discriminating properties among groups of data (Example: Clustering) Data – Property Discovery, Partitioning Clusters – Supervised: known properties, categorize data with unknown properties (Example: Classification) Training Data Build Classification Model Predict Test Data
Classification • Classification: The task of assigning class labels in a discrete class label set Y to input instances in an input space X • Ex: Y = { toxic, non-toxic }, X = {valid molecular structures} Misclassified data instance (test error) Unclassified data instances Training the classification model using the training data Assignment of the unknown (test) data to appropriate class labels using the model
Classification Outline • Introduction, Overview • Classification using Graphs, – Graph classification – Direct Product Kernel • Predictive Toxicology example dataset – Vertex classification – Laplacian Kernel • WEBKB example dataset • Related Works
Classification with Graph Structures • Graph classification • Vertex classification (between-graph) – Each full graph is assigned a class label • Example: Molecular graphs (within-graph) – Within a single graph, each vertex is assigned a class label • Example: Webpage (vertex) / hyperlink (edge) graphs BB AA EE CC Toxic DD NCSU domain Faculty Course Student
Relating Graph Structures to Classes? • Frequent Subgraph Mining (Chapter 7) – Associate frequently occurring subgraphs with classes • Anomaly Detection (Chapter 11) – Associate anomalous graph features with classes • *Kernel-based methods (Chapter 4) – Devise kernel function capturing graph similarity, use vector- based classification via the kernel trick
分享到:
收藏