logo资料库

发动机电喷控制系统的设计应用.pdf

第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
资料共4页,全文预览结束
发动机电喷控制系统的设计应用 发动机电喷控制系统的设计应用 本文针对摩托车单缸发动机进行了电喷技术研究,设计了发动机电喷控制系统,实现了空燃比的精确控制,提 高了燃烧效率。   1 概述      本文针对摩托车单缸发动机进行了电喷技术研究,设计了发动机电喷控制系统,实现了空燃比的精确控制,提高了燃烧效 率。   2 系统设计   电喷控制系统结构如图1所示。本系统基于125 cc单缸四冲程汽油发动机设计。整个系统包括   2.1 传感器的选择与安装 图1 电喷控制系统结构   为了得到曲轴和凸轮轴的位置信号,曲轴位置传感器和凸轮轴位置传感器使用霍尔开关量传感器,在启动离合器和小链盘 的特定位置分别固定一个小磁铁,通过磁铁经过传感器时产生的方波信号来判断曲轴和凸轮轴的位置。由于传感器体积小、不 易安装,设计了传感器电路板,使得传感器的信号稳定,不受油污、灰尘等不良环境的影响。传感器在发动机上的安装如图2 所示。   节气门位置传感器是一个线性电位计,实物图如图3所示。其电阻值与节气门的开度成正比,通过给电位计供电,采用A /D采集得到节气门开度。 图2 传感器在发动机上的安装
  发动机温度传感器和空气温度传感器选用热敏电阻式传感器。其电阻值会随温度的变化而呈线性变化,从而测量发动机缸 温和空气温度。 图3  节气门位置传感器   2.2   执行器包括用于点火的高压包,给燃油系统提供油压的燃油喷射泵(喷油泵)和用于喷射燃油的燃油喷射器(喷油器)。   高压包又称点火线圈,由一次线圈、二次线圈和铁芯组成。使用时先给一次线圈充电,在一次线圈中自感应出200~300 V的电压;然后与二次线圈互感而产生出18~20 kV的高压电,产生的电压大小取决于两线圈的匝数比;最后将高压电输送到 火花塞点火。   喷油泵输出油压300 kPa,恒压输出,采用脉冲信号驱动柱塞运动、压缩燃油获得压力。喷油器自带高压进油嘴,喷射量 精确,流量与喷射脉宽如图4所示,雾化效果较好。三条线对应的驱动电压由上至下依次为14.2 V、13.2 V、12.2 V。 图4 三种驱动电压14.2 V、13.2 V、12.2 V下不同驱动脉完对应用的流量   3 控制系统硬件设计   采用Freescale公司MC68HC9S12XS128单片机作为控制芯片,使用IGBT v2040s芯片控制点火,使用Power MOSFET IRF3205控制喷油泵和喷射器,通过控制门极电压来实现开关的功能,对执行器进行低端控制。执行器控制电路如图5所示。 MC74HC125AD为同相器。 由于整车的电气环境比较恶劣,因此硬件电路的抗干扰性能就显得很重要。首先,通过Protel DXP软件设计、绘制PCB电路板,既减小了电路板的体积,又增强了抗干 扰能力。其次,输入信号都要经过相应的信号调理电路处理后再进入单片机,处理后的信号干扰大大减小。对于曲轴和凸轮轴的信号,采用阈值比较器LM339设计了阈 值比较电路,如图6所示。这个电路不但把发动机原装的励磁信号转化成方波信号,而且可以对改装以后的传感器信号进行处理。另外,单片机有内部A/D模块,对于 模拟量需要使用一个低通滤波器电路进行滤。M74HC04M1R为反相器。
  4 控制系统软件设计   本控制系统的程序是在Codewarrior IDE上完成编写和调试的。控制程序结合节能车的工况来设计,节能车发动机在比赛 时主要有启动、怠速和加速3个过程。控制程序流程如图7所示。 图7 控制程序流程   点火时刻的确定:通过两次曲轴信号来计算出转速,进而查得设定的点火提前角,然后在相应时刻点火。   喷油时刻的确定:依据凸轮轴信号判断出压缩冲程,与压缩冲程的曲轴信号同步喷射。   喷油量的确定:先设定基本喷油量,再根据节气门开度、缸温、空气温度对喷油量进行修正。   喷射持续时间的计算方法:   TI=TP·FC+FV   式中,TI为汽油喷射的持续时间(ms);TP为基本喷射时间(ms);FC为基本喷射时间的修正系数;TV为喷射器无效喷射时 间(ms)。   其中,FC由下式计算得出:   FC=g(FAT,FTP,FCT)   式中,FAT为空气温度修正系数;FCT为缸温修正系数;FTP为节气门开度修正系数。   5 实际测试结果   本系统首先在发动机上完成验证试验,然后利用节能车来做路跑试验。结果表明该系统可稳定工作,节油效果明显。进一 步采用化油器、市售电喷系统和自研电喷系统进行对比试验。试验场地为操场塑胶跑道,试验人员体重配重达到50 kg。试验 方式为在跑道上行驶5圈,点火加速10次,每圈时间在57 s以内,最后记录耗油量。以至少3次数据作为分析依据,超时成绩 作废。尽量选择晴朗无风(或微风)天气,当天机械上不做改动。测得的试验数据如图8所示。
  结语   本文完成了传感器和执行器的选型,以及发动机电喷控制系统的软硬件设计,并进行了装机和装车道路试验。设计的控制 系统工作稳定,试验测试数据显示节油效果明显,为后续的深入研究建立了基础。
分享到:
收藏