logo资料库

2017年普渡大学abaqus软件切削仿真培训讲义.pdf

第1页 / 共23页
第2页 / 共23页
第3页 / 共23页
第4页 / 共23页
第5页 / 共23页
第6页 / 共23页
第7页 / 共23页
第8页 / 共23页
资料共23页,剩余部分请下载后查看
Abaqus Training Seminar for Machining Simulation
Content
1. Machining simulation Methodology
2. Abaqus Workbench
3. 2D Machining Simulation of AISI 4140 Steel [1]
3.1 Geometry Creation
3.2 Material
3.2 Material
3.3 Meshing the parts
3.4 Assembly
3.5 Analysis Type
3.5 Analysis Type
3.5.1 Arbitrary Lagrangian-Eulerian (ALE)
3.6 Interaction
3.7 Boundary conditions
3.8 Running simulation (Job) and results
3.9 Plotting results (Cutting forces)
3.10 Results
4. 3D Machining Simulation of Ti6Al4V [2]
4.1 Geometry, Materials, Meshing, and Assembly
4.2 Analysis, Interaction, and B.Cs
4.3 Results
5. Conclusion
Abaqus Training Seminar for Machining Simulation Mohamed Elkhateeb Date: Sept. 29. 2017 PPPUUURRRDDDUUUEEE ––– CCCLLLAAAMMM http://engineering.purdue.edu/CLM/ Purdue University : Center for Laser-based Manufacturing PPPUUURRRDDDUUUEEE ––– CCCLLLAAAMMM
Content 1. Machining simulation Methodology 2. Abaqus Workbench 3. 2D Machining Simulation of AISI 4140 Steel 4. 3D Machining Simulation of Ti6Al4V Interaction 5. Conclusion 6. ALE Purdue University : Center for Laser-based Manufacturing PPPUUURRRDDDUUUEEE ––– CCCLLLAAAMMM
1. Machining simulation Methodology FEM Geometry Material Type Interaction Meshing Boundary Conditions Running Simulation 2D 3D Properties Dynamic Property Type Tool Results Constitutive Dynamic - Temp Type Size Workpiece “Simulation is invaluable until it agrees with experimental results”, Prof. Yung Shin. Purdue University : Center for Laser-based Manufacturing PPPUUURRRDDDUUUEEE ––– CCCLLLAAAMMM
2. Abaqus Workbench Purdue University : Center for Laser-based Manufacturing PPPUUURRRDDDUUUEEE ––– CCCLLLAAAMMM
3. 2D Machining Simulation of AISI 4140 Steel [1] o Orthogonal Cutting of AISI 4140. o Workpiece  Material: AISI 4140 Steel  Dimensions: 2mm x 0.6mm o Cutting Tool  Uncoated Tungsten Carbide  Dimensions (selective): 0.2mm x 0.8mm  Angles: neutral rake angle – 7o clearance angle o Cutting Conditions  Feed: 0.1mm/rev , Depth of cut (width): 2.5mm, and Cutting speed: 100m/min Cutting direction Cutting tool Workpiece 1. Akbar F, Mativenga PT, Sheikh M. An experimental and coupled thermo-mechanical finite element study of heat partition effects in machining. The International Journal of Advanced Manufacturing Technology. 2010;46(5-8): Purdue University : Center for Laser-based Manufacturing PPPUUURRRDDDUUUEEE ––– CCCLLLAAAMMM Feed: 0.1mm
3.1 Geometry Creation o Creating the geometry of the tool and workpiece through the part module. o Create each individually and then assemble them (dependent and independent assembly) in the assembly module.. Create the part 3D features Partitioning References Sketch Dimensions & Units Sketch basic entities Units consistency Reference point (rigid body) Purdue University : Center for Laser-based Manufacturing PPPUUURRRDDDUUUEEE ––– CCCLLLAAAMMM
3.2 Material Depth of cut Workpiece Create a material Create a section Assign section to partition o Based on analysis requirements: thermal - dynamic o Cutting Tool: elastic and thermal properties o Workpiece: elastic, plastic, damage, and thermal properties. o Partition the workpiece: damage layer (larger than edge radius) – more stable. o The depth of cut is used as the plane stress/strain thickness. Purdue University : Center for Laser-based Manufacturing PPPUUURRRDDDUUUEEE ––– CCCLLLAAAMMM
3.2 Material o Constitutive model  Used to describe the material deformation behavior.  Obtained by fitting stress strain curves to certain models, e.g. Johnson cook model. o Damage Criteria  Describe chip separation.  Damage initiation: start of degradation in stiffness  Damage evolution and element deletion. Purdue University : Center for Laser-based Manufacturing PPPUUURRRDDDUUUEEE ––– CCCLLLAAAMMM
分享到:
收藏