logo资料库

Image Analysis, Classification, and Change Detection in Remote Sensing 2d.pdf

第1页 / 共474页
第2页 / 共474页
第3页 / 共474页
第4页 / 共474页
第5页 / 共474页
第6页 / 共474页
第7页 / 共474页
第8页 / 共474页
资料共474页,剩余部分请下载后查看
Front cover
Contents
Preface to the Second Edition
Preface to the First Edition
Chapter 1. Images, Arrays, and Matrices
Chapter 2. Image Statistics
Chapter 3. Transformations
Chapter 4. Filters, Kernels, and Fields
Chapter 5. Image Enhancement and Correction
Chapter 6. Supervised Classification: Part 1
Chapter 7. Supervised Classification: Part 2
Chapter 8. Unsupervised Classification
Chapter 9. Change Detection
Appendix A: Mathematical Tools
Appendix B: Efficient Neural Network Training Algorithms
Appendix C: ENVI Extensions in IDL
Appendix D: Mathematical Notation
References
Index
Back cover
S E C O N D E D I T I O N IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING with Algorithms for ENVI/IDL
S E C O N D E D I T I O N IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING with Algorithms for ENVI/IDL Morton J. Canty Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business
CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20131120 International Standard Book Number-13: 978-1-4200-8714-7 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com
Contents Preface to the Second Edition.................................................... xi Preface to the First Edition ....................................................... xiii 1 1. Images, Arrays, and Matrices ................................................ 2 1.1 Multispectral Satellite Images ........................................... 5 1.2 Algebra of Vectors and Matrices ........................................ 6 1.2.1 Elementary Properties ........................................... 1.2.2 Square Matrices ................................................... 8 1.2.3 Singular Matrices ................................................. 10 1.2.4 Symmetric, Positive Definite Matrices ......................... 11 1.2.5 Linear Dependence and Vector Spaces ........................ 12 1.3 Eigenvalues and Eigenvectors .......................................... 13 1.4 Singular Value Decomposition.......................................... 16 1.5 Vector Derivatives ........................................................ 18 1.6 Finding Minima and Maxima ........................................... 19 1.7 Exercises .................................................................... 25 2. Image Statistics ................................................................. 27 2.1 Random Variables ........................................................ 27 2.1.1 Discrete Random Variables ..................................... 28 2.1.2 Continuous Random Variables ................................. 29 2.1.3 Normal Distribution .............................................. 32 2.2 Random Vectors ........................................................... 34 2.3 Parameter Estimation..................................................... 39 2.3.1 Sampling a Distribution ......................................... 39 2.3.2 Interval Estimation ............................................... 42 2.3.3 Provisional Means ................................................ 43 2.4 Hypothesis Testing and Sample Distribution Functions ............ 44 2.4.1 Chi-Square Distribution ......................................... 48 2.4.2 Student-t Distribution ............................................ 49 2.4.3 F-Distribution ..................................................... 50 2.5 Conditional Probabilities, Bayes’ Theorem, and Classification .... 51 2.6 Ordinary Linear Regression ............................................. 55 2.6.1 One Independent Variable ...................................... 55 2.6.2 More Than One Independent Variable ........................ 57 2.6.3 Regularization, Duality, and the Gram Matrix ............... 60 2.7 Entropy and Information ................................................ 62 2.7.1 Kullback–Leibler Divergence ................................... 64 2.7.2 Mutual Information .............................................. 64 2.8 Exercises .................................................................... 65 v
vi Contents 3. Transformations................................................................ 69 3.1 Discrete Fourier Transform .............................................. 69 3.2 Discrete Wavelet Transform ............................................. 73 3.2.1 Haar Wavelets ..................................................... 75 3.2.2 Image Compression .............................................. 79 3.2.3 Multiresolution Analysis ........................................ 82 3.2.3.1 Dilation Equation and Refinement Coefficients .............................................. 83 3.2.3.2 Cascade Algorithm ..................................... 84 3.2.3.3 Mother Wavelet ......................................... 85 3.2.3.4 Daubechies D4 Scaling Function ..................... 87 3.3 Principal Components .................................................... 89 3.3.1 Primal Solution .................................................... 91 3.3.2 Dual Solution ...................................................... 91 3.4 Minimum Noise Fraction ................................................ 93 3.4.1 Additive Noise .................................................... 93 3.4.2 Minimum Noise Fraction Transformation in ENVI ......... 96 3.5 Spatial Correlation ........................................................ 98 3.5.1 Maximum Autocorrelation Factor.............................. 98 3.5.2 Noise Estimation .................................................. 101 3.6 Exercises .................................................................... 103 4. Filters, Kernels, and Fields ................................................... 107 4.1 Convolution Theorem .................................................... 107 4.2 Linear Filters ............................................................... 111 4.3 Wavelets and Filter Banks ............................................... 113 4.3.1 One-Dimensional Arrays ........................................ 115 4.3.2 Two-Dimensional Arrays........................................ 120 4.4 Kernel Methods ........................................................... 122 4.4.1 Valid Kernels ...................................................... 124 4.4.2 Kernel PCA ........................................................ 127 4.5 Gibbs–Markov Random Fields .......................................... 130 4.6 Exercises .................................................................... 135 5. Image Enhancement and Correction ....................................... 139 5.1 Lookup Tables and Histogram Functions ............................. 139 5.2 Filtering and Feature Extraction ........................................ 141 5.2.1 Edge Detection .................................................... 141 5.2.2 Invariant Moments ............................................... 145 5.3 Panchromatic Sharpening................................................ 150 5.3.1 HSV Fusion ........................................................ 151 5.3.2 Brovey Fusion ..................................................... 152 5.3.3 PCA Fusion ........................................................ 153 5.3.4 DWT Fusion ....................................................... 154 5.3.5 À Trous Fusion..................................................... 155
Contents vii 5.3.6 Quality Index ...................................................... 157 5.4 Topographic Correction .................................................. 159 5.4.1 Rotation, Scaling, and Translation ............................. 159 5.4.2 Imaging Transformations........................................ 160 5.4.3 Camera Models and RFM Approximations................... 161 5.4.4 Stereo Imaging and Digital Elevation Models ................ 163 5.4.5 Slope and Aspect.................................................. 167 5.4.6 Illumination Correction .......................................... 170 5.5 Image–Image Registration ............................................... 175 5.5.1 Frequency-Domain Registration................................ 176 5.5.2 Feature Matching ................................................. 177 5.5.2.1 High-Pass Filtering ..................................... 178 5.5.2.2 Closed Contours ........................................ 179 5.5.2.3 Chain Codes and Moments ........................... 179 5.5.2.4 Contour Matching ...................................... 180 5.5.2.5 Consistency Check...................................... 180 5.5.2.6 Implementation in IDL................................. 181 5.5.3 Resampling and Warping ....................................... 182 5.6 Exercises .................................................................... 183 6. Supervised Classification: Part 1 ............................................ 187 6.1 Maximum a Posteriori Probability....................................... 188 6.2 Training Data and Separability ......................................... 189 6.3 Maximum Likelihood Classification ................................... 193 6.3.1 ENVI’s Maximum Likelihood Classifier ...................... 195 6.3.2 Modified Maximum Likelihood Classifier .................... 196 6.4 Gaussian Kernel Classification .......................................... 198 6.5 Neural Networks .......................................................... 202 6.5.1 Neural Network Classifier ...................................... 207 6.5.2 Cost Functions..................................................... 209 6.5.3 Backpropagation .................................................. 212 6.5.4 Overfitting and Generalization ................................. 216 6.6 Support Vector Machines ................................................ 219 6.6.1 Linearly Separable Classes ...................................... 220 6.6.1.1 Primal Formulation..................................... 221 6.6.1.2 Dual Formulation ....................................... 222 6.6.1.3 Quadratic Programming and Support Vectors..... 224 6.6.2 Overlapping Classes.............................................. 225 6.6.3 Solution with Sequential Minimal Optimization ............ 227 6.6.4 Multiclass SVMs .................................................. 228 6.6.5 Kernel Substitution ............................................... 230 6.6.6 Modified SVM Classifier......................................... 231 6.7 Exercises .................................................................... 232
分享到:
收藏