Singular Spectrum Analysisfor Time Series
Contents
1 Introduction
1.1 Preliminaries
1.2 SSA Methodology and the Structure of the Book
1.3 SSA Topics Outside the Scope of This Book
1.4 Common Symbols and Acronyms
References
2 Basic SSA
2.1 The Main Algorithm
2.1.1 Description of the Algorithm
2.1.2 Analysis of the Four Steps in Basic SSA
2.2 Potential of Basic SSA
2.2.1 Extraction of Trends and Smoothing
2.2.2 Extraction of Periodic Components
2.2.3 Complex Trends and Periodicities with Varying Amplitudes
2.2.4 Finding Structure in Short Time Series
2.2.5 Envelopes of Oscillating Signals and Estimation of Volatility
2.3 Models of Time Series and SSA Objectives
2.3.1 SSA and Models of Time Series
2.3.2 Classification of the Main SSA Tasks
2.3.3 Separability of Components of Time Series
2.4 Choice of Parameters in Basic SSA
2.4.1 General Issues
2.4.2 Grouping for Given Window Length
2.4.3 Window Length
2.4.4 Signal Extraction
2.4.5 Automatic Identification of SSA Components
2.5 Some Variations of Basic SSA
2.5.1 Preprocessing
2.5.2 Centering in SSA
2.5.3 Stationary Series and Toeplitz SSA
2.5.4 Rotations for Separability: SSA--ICA
2.5.5 Sequential SSA
2.5.6 Computer Implementation of SSA
2.5.7 Replacing the SVD with Other Procedures
References
3 SSA for Forecasting, Interpolation, Filtration and Estimation
3.1 SSA Forecasting Algorithms
3.1.1 Main Ideas and Notation
3.1.2 Formal Description of the Algorithms
3.1.3 SSA Forecasting Algorithms: Similarities and Dissimilarities
3.1.4 Appendix: Vectors in a Subspace
3.2 LRR and Associated Characteristic Polynomials
3.2.1 Basic Facts
3.2.2 Roots of the Characteristic Polynomials
3.2.3 Min-Norm LRR
3.3 Recurrent Forecasting as Approximate Continuation
3.3.1 Approximate Separability and Forecasting Errors
3.3.2 Approximate Continuation and the Characteristic Polynomials
3.4 Confidence Bounds for the Forecast
3.4.1 Monte Carlo and Bootstrap Confidence Intervals
3.4.2 Confidence Intervals: Comparison of Forecasting Methods
3.5 Summary and Recommendations on Forecasting Parameters
3.6 Case Study: `Fortified Wine'
3.6.1 Linear Recurrence Relation Governing the Time Series
3.6.2 Choice of Forecasting Methods and Parameters
3.7 Missing Value Imputation
3.7.1 SSA for Time Series with Missing Data: Algorithm
3.7.2 Discussion
3.7.3 Example
3.8 Subspace-Based Methods and Estimation of Signal Parameters
3.8.1 Basic Facts
3.8.2 ESPRIT
3.8.3 Overview of Other Subspace-Based Methods
3.8.4 Cadzow Iterations
3.9 SSA and Filters
3.9.1 Linear Filters and Their Characteristics
3.9.2 SSA Reconstruction as a Linear Filter
3.9.3 Middle Point Filter
3.9.4 Last Point Filter and Forecasting
3.9.5 Causal SSA (Last-Point SSA)
References