logo资料库

中科院数值线性代数典型例题复习题(含答案).pdf

第1页 / 共30页
第2页 / 共30页
第3页 / 共30页
第4页 / 共30页
第5页 / 共30页
第6页 / 共30页
第7页 / 共30页
第8页 / 共30页
资料共30页,剩余部分请下载后查看
5Œ5Œ6SK 'Œ˜:(K) 1. A ∈ Cn×n, K ∞ (1)m^v, k k=0 Ak´æ ⇔ lim k→∞ Ak = 0 ∞ k=0 Ak = (I − A)−1 (1) (2) dØu´æ?Œ', keªO, =:3 Cn×n NŒ · , ƒ: (I − A)−1 − m k=0 Ak ≤ A m+1 1− A (3) ∞ k=0 y†. (1)⇒: e k = n > N + 1 Ak ´æ, dCauchy´æOKk ∀ > 0, ∃N > 0, n > N , An+1 < , An < . k→∞ Ak = 0. ˇd, lim m k→∞ Ak = 0, K ρ(A) < 1, ˇd3,NŒ · , ƒ A < 1. ⇐: ˇ lim - Sm = Ak, @o k=0 Sm = I + A + A2 + ··· + Am ≤ I + A +··· + A m 1− A m+1 1− A 1− A 1 = ≤ 1
(I − A)Sm = I + A + A2 + ··· + Am − A − A2 − ··· − Am+1 = I − Am+1 ∞ k=0 Ak ´æ. K Sm k., = (2)ˇLOk - m → ∞ k = @o (I − A)−1 − m ∞ k=0 ≤ A m+1 A k= k=0 (I − A) Ak = I, (I − A)−1 = Ak. ∞ k=0 ∞ ∞ k=0 k=m+1 A m+1 1− A Ak = Ak ≤ A m+1 (4) (5) ∞ k=0 Ak 2. A B 'O m × n, n × m, K (1) AB BA k()›Œ)"A; (2) A, B n , _, K AB BA q. y†. m ≤ n, K λmdet( ) = λmdet( Im A B λIn λmdet( Im A B λIn ) ) Im A B λIn 0 Im −B In Im 0 λIn − BA A ) = λmdet( = λmdet(λIn − BA) ) = det( λIm −A 0 In λIm − AB 0 λIn B Im A B λIn ) = det( = λndet(λIm − AB) 2
=, det(λIn − BA) = λn−mdet(λIm − AB). ˇd, AB Aı“ BA Aı“"k›Œ. (2) A _, K A−1(AB)A = BA, = AB BA q. 3.(1) A n × n Hermite, K x∗Ax x∗x λ1 = max x=0 x∗Ax x∗x , λn = min x=0 (6) (2) A, B n Hermite, B ‰,P µ1 ≥ ··· ≥ µn A ’u B Ø A, = µi det(A − µB) , K x∗Ax x∗Bx , µn = min x=0 x∗Ax x∗Bx µ1 = max x=0 (7) . . y†. (1)ˇ A ·Hermite, ˇd3j Q, ƒ A = Q∗ΛQ, ¥ Λ = diag (λ1, λ2,··· , λn), λ1 ≥ λ2 ≥ ··· ≥ λn. Ø?¿ x = 0, - y = Qx, d y = 0. x∗Ax x∗x = x∗Q∗ΛQx x∗Q∗Qx = y∗Λy y∗y = n n i=1 |yi|2 i=1 |yi|2 ≤ n n i=1 λi|yi|2 i=1 |yi|2 = λn x∗Ax x∗x ⁄– λn = n n i=1 λi|yi|2 i=1 |yi|2 , n n i=1 |yi|2 i=1 |yi|2 = λ1. ≤ λ1 x1 A ØAu λ1 A, xn A ØAu λn A, x∗ 1Ax1 x∗ 1x1 λ1x∗ 1x1 x∗ 1x1 = (2)ˇ B ‰, det(B− 1 λ1 = max x=0 2 ) = 0, K x∗ nAxn x∗ nxn λnx∗ nxn x∗ nxn = = λn, , λn = min x=0 x∗Ax x∗x . = λ1, x∗Ax x∗x 2 ) = det(B− 1 2 AB− 1 2 − µI), 2 ) , = µ1, µ2,··· , µn B− 1 2 AB− 1 2 ⁄kA.Ø det(B− 1 µi det(µI−B− 1 ?¿ x = 0, - y = B 1 x∗Ax x∗Bx 2 )det(A − µB)det(B− 1 2 AB− 1 2 x, d y = 0. 2 B− 1 x∗B 1 2 AB− 1 2 B 1 2 x x∗B 1 = 2 B 1 2 x y∗B− 1 2 AB− 1 2 y y∗y , = 3
K λ1 = max y=0 y∗B− 1 2 AB− 1 2 y y∗y x∗Ax x∗Bx = max x=0 , λn = min y=0 y∗B− 1 2 AB− 1 2 y y∗y x∗Ax x∗Bx . min x=0 4. A, B n Hermite‰,K κ(A + B) ≤ max{κ(A), κ(B)}, max{ κ(A) κ(B) , κ(B) κ(A) } ≤ κ(AB) ≤ κ(A)κ(B), (8) (9) ¥ κ(A) L« A ^Œ. y†. (1) A, B n Hermite‰, K A + B ·Hermite‰. λ1(C), λn(C) 'OL« C A, K λ1(A), λn(A), λ1(B), λn(B) > 0, d1nK, λ1(A + B) = max x=0 λn(A + B) = min x=0 x∗(A + B)x x∗x x∗(A + B)x x∗x ≤ max x=0 ≥ min x=0 x∗Ax x∗x x∗Ax x∗x x∗Bx x∗x x∗Bx x∗x + max x=0 + min x=0 = λ1(A) + λ1(B) = λn(A) + λn(B), ˇd, |^ a b ≤ c d ⇒ a+c b+d ≤ c κ(A + B) = λ1(A + B) λn(A + B) ≤ λ1(A) + λ1(B) λn(A) + λn(B) d, a, b, c, d > 0, i.e κ(A) ≤ κ(B), K λ1(A) . λn(A) ≤ λ1(B) λn(B), = κ(A + B) = λ1(A) + λ1(B) λn(A) + λn(B) ≤ λ1(B) λn(B) = κ(B), ii.e κ(B) < κ(A), K λ1(B) λn(B) < λ1(A) λn(A), = κ(A + B) = λ1(A) + λ1(B) λn(A) + λn(B) ≤ λ1(A) λn(A) = κ(A), n, κ(A + B) ≤ max{κ(A), κ(B)}. (2)dŒN5, κ(AB) = AB (AB)−1 = AB B−1A−1 ≤ A B A−1 B−1 = κ(A)κ(B), 4
κ(A) = A A−1 = ABB−1 BB−1A ≤ AB B−1 B (AB)−1 = κ(B)κ(AB) κ(B) = B B−1 = AA−1B B−1A−1A ≤ A−1 AB (AB)−1 A = κ(A)κ(AB), n, max{ κ(A) κ(B) , κ(B) κ(A) } ≤ κ(AB) ≤ κ(A)κ(B). 5. A ∈ Cn×n n Hermite, B · A k f“, (1 ≤ k ≤ n−1), ¿ A B A'O λ1 ≥ λ2 ≥ ··· ≥ λn µ1 ≥ µ2 ≥ ··· ≥ µn, K λi ≥ µi ≥ λn−k+i, i = 1, 2,··· , k. (10) y†. B · A k f“, B ∗ ∗ ∗ A = Ik 0 ∈ C n×k, K B = U∗AU . - U = d44‰n, K3 i fm P ⊆ Ck ƒ x∗Bx. µi = min x∈P,x=1 - Q = {y = U x|x ∈ P}, · Cn i fm, k x∈P,x=1 µi = min ≤ max dim S=i min y∈S,y=1 x∗Bx = min x∈P,x=1 y∗Ay = λi. x∗U∗AU x = min y∈Q,y=1 y∗Ay (11) λi(M ) L« M 1 i A, k λj(−A) λj(−B) = −λk−j+1(B) - j = k − i + 1 k −λn−k+i = λk+1−i(−A) −λi(B) = −µi. 5
=(. 6. A ∈ Cm×n p , `ƒ Ak ∈ Cm×n A − Ak F = min{ A − B F : B ∈ Cm×n (1 ≤ k ≤ p) ƒ p k XJ?b‰ A σ1 ≥ σ2 ≥ ··· ≥ σn, `y: ). A ') A = U∗ min rank(B)≤k = (σ2 1 2 . k+1 + ··· + σ2 n) Σp 0 0 0 V } (12) (13) Kk A − B F = U∗ Σp = diag (σ1, σ2,··· , σp), σ1 ≥ σ2 ≥ ··· ≥ σp. Σp 0 0 0 V − B F = Σp 0 0 0 − U BV ∗ F - C = U BV ∗, A − B 2 F = i=j c2 ij + min{m,n} j=p+1 c2 jj + p j=1 (σj − cjj)2 dd, d, = min rank(B)≤k A − B F = (σ2 k+1 + ··· + σ2 n) 1 2 .  0, 0, σk, 0, cij = i = j i = j ≥ p + 1 i = j ≤ k k + 1 ≤ i = j ≤ p. 6 Ak = U∗ Σk 0 0 0 V.
7. A ∈ Cn×n, λ(A) = {λi}, σ(A) = {σi}, `y: XJ |λ1| ≥ |λ2| ≥ ··· ≥ |λn|,|σ1| ≥ |σ2| ≥ ··· ≥ |σn|, K k σi ≥ k |λi|, k = 1, 2,··· , n (14) i=1 i=1 y†. k = n , n i=1 σi = det(A∗A) = |det(A)|2 = n i=1 |λi| k < n , A Shur')  λ1 0 λ2 . . .  U = U∗ ∗ λn U T11 T12 0 T22 A = U∗T U = U∗ ¥ U j, T n, T11 k , ˇd, T A A . T 2 = , T ∗T = T 2 11 0 ∗ T 2 22 2,··· , µ2 k. 11T11 ∗ T ∗ ∗ ∗ . T ∗ 11T11 A µ2 KdA'‰n, T ∗ 1, µ2 11T11 · T ∗T f, ˇd, 2d det(T ∗ 11T11) = |det(T 2 11)|, k k i=1 i ≥ µ2 σ2 i . k µ2 i = |λi|2, i=1 7
@o n, k(14)⁄Æ. k i=1 !5§|'(K) 8.5§| Ax = b, ¥ |λi|. i=1 σi ≥ k  , b =  2 A = −1 −1 −1 10−10 10−10 10−10 10−10 1 2(1 + 10−10)  −10−10 10−10 (1)y: x = (1010,−1, 1) ·§|), ^Œ· κ∞(A) = 2(1010 + 1) ≈ 2 × 1010; (2)y†: XJ |E| < 10−8|A|, (A + E)y = b, Kk |x − y| < 10−7|x|. øL†, = ƒ A ^ŒØ, A 6˜7‰‹ x ªCz; (3)‰´ D = diag (10−5, 105, 105), y†: κ∞(DAD) ≤ 5. y†.  2 −1 −1 −1 10−10 10−10 10−10 10−10 1 , x = (1010,−1, 1) ·§|).  0 1 2 − 1 2 A−1 = − 1 2 − 1  1010 −1 1  =  −10−10 10−10 2(1 + 10−10)  . 1 2 1 1 4(2 − 1010) 4(2 + 1010) − 1 4(2 + 1010) 4(2 − 1010) 4(2 + 1010) = 5 × 109 + 1 2. A = 4, A−1 = 1 κ∞(A) = 4(5 × 109 + 1 (2)P  = 10−8. ˇ Ax = b, (A + E)y = b, k x− y = A−1Ey, = x = (I + A−1E)y. 5¿ |E| < 10−8|A|, 4(1010 − 2) + 1 2 + 1 2) ≈ 2 × 1010.  4 × 10−10 4 × 10−20 4 × 10−20 2 + 4 × 10−10 4 × 10−10 4 × 10−10 2 + 4 × 10−10 4 × 10−10 4 × 10−10  . 8 |A−1E| ≤ 10−8|A−1||A| = 25
分享到:
收藏