logo资料库

英文版应用随机过程第九版习题答案.pdf

第1页 / 共114页
第2页 / 共114页
第3页 / 共114页
第4页 / 共114页
第5页 / 共114页
第6页 / 共114页
第7页 / 共114页
第8页 / 共114页
资料共114页,剩余部分请下载后查看
Instructor’s Manual to Accompany Introduction to Probability Models Ninth Edition Sheldon M. Ross University of California Berkeley, California AMSTERDAM • BOSTON • HEIDELBERG • LONDON SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO NEW YORK • OXFORD • PARIS • SAN DIEGO Academic Press is an imprint of Elsevier
Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK Copyright c 2007, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.” ISBN 13: 978-0-12-373875-2 ISBN 10: 0-12-373875-X For information on all Academic Press publications visit our Web site at www.books.elsevier.com Printed in the United States of America 06 07 08 09 10 7 9 8 6 5 4 3 2 1
Contents Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Chapter 1 1. S = {(R, R), (R, G), (R, B), (G, R), (G, G), (G, B), (B, R), (B, G), (B, B)}. The probability of each point in S is 1/9. 7. 2. S = {(R, G), (R, B), (G, R), (G, B), (B, R), (B, G)}. 3. S = {(e1, e2, . . . , en), n ≥ 2} where ei ∈ (heads, In addition, en = en−1 = heads and for tails}. i = 1, . . . , n − 2 if ei = heads, then ei+1 = tails. P{4 tosses} = P{(t, t, h, h)} + P{(h, t, h, h)} If (E ∪ F)c occurs, then E ∪ F does not occur, and so E does not occur (and so Ec does); F does not occur (and so Fc does) and thus Ec and Fc both occur. Hence, (E ∪ F)c ⊂ EcFc. If EcFc occurs, then Ec occurs (and so E does not), and Fc occurs (and so F does not). Hence, neither E or F occur and thus (E ∪ F)c does. Thus, EcFc ⊂ (E ∪ F)c . and the result follows. 8. 1 ≥ P(E ∪ F) = P(E) + P(F) − P(EF). 9. F = E ∪ FEc, implying since E and FEc are disjoint that P(F) = P(E) + P(FE)c. 10. Either by induction or use 4 = 2 1 2 = 1 8 (a) F(E ∪ G)c = FEcGc. (b) EFGc. (c) E ∪ F ∪ G. (d) EF ∪ EG ∪ FG. (e) EFG. (f) (g) (EF)c(EG)c(FG)c. (h) (EFG)c. (E ∪ F ∪ G)c = EcFcGc. 4. 5. 6. . If he wins, he only wins $1, while if he loses, he 3 4 loses $3. If E(F ∪ G) occurs, then E occurs and either F or G occur; therefore, either EF or EG occurs and so E(F ∪ G) ⊂ EF ∪ EG. Similarly, if EF ∪ EG occurs, then either EF or EG occur. Thus, E occurs and either F or G occurs; and so E(F ∪ G) occurs. Hence, EF ∪ EG ⊂ E(F ∪ G), which together with the reverse inequality proves the result. · · · Ec 1 E2 ∪ Ec 1 Ec 2 1 n−1 En, Ei = E1 ∪ Ec E3 ∪ · · · ∪ Ec n∪ 1 and as each of the terms on the right side are mutually exclusive: P(∪ i Ei) = P(E1) + P(Ec E2) + P(Ec 1 1 · · · Ec En) n−1 +P(Ec 1 ≤ P(E1) + P(E2) + · · · + P(En). E3) + · · · (why?) Ec 2 11. P{sum is i} =   i − 1 , 36 13 − i 36 i = 2, . . . , 7 , i = 8, . . . , 12. 12. Either use hint or condition on initial outcome as: P{E before F} = P{E before F | initial outcome is E}P(E) +P{E before F | initial outcome is F}P(F) +P{E before F | initial outcome neither E or F}[1 − P(E) − P(F)] 1
2 = 1 · P(E) + 0 · P(F) + P{E before F} = [1 − P(E) − P(F)]. Therefore, P{E before F} = P(E) P(E) + P(F) . 13. Condition an initial toss P{win} = 12∑ i=2 P{win | throw i}P{throw i}. Now, P{win| throw i} = P{i before 7}   = 0 i − 1 5 + 1 1 13 − i 19 − 1 i = 2, 12 i = 3, . . . , 6 i = 7, 11 i = 8, . . . , 10, where above is obtained by using Problems 11 and 12. P{win} ≈ .49. = P P{A wins on (2n + 1)st toss} 14. P{A wins} = ∞∑ n=0 (1 − P)2nP = ∞∑ n=0 [(1 − P)2]n ∞∑ n=0 1 1 − (1 − P)2 P 2P − P2 2 − P . = 1 − P 2 − P . P{B wins} = 1 − P{A wins} = = 1 = P 16. P(E ∪ F) = P(E ∪ FEc) = P(E) + P(FEc) since E and FEc are disjoint. Also, P(F) = P(FE ∪ FEc) = P(FE) + P(FEc) by disjointness. Hence, P(E ∪ F) = P(E) + P(F) − P(EF). Answers and Solutions 17. Prob{end} = 1 − Prob{continue} = 1 − P({H, H, H} ∪ {T, T, T}) = 1 − [Prob(H, H, H) + Prob(T, T, T)]. · 1 2 + 1 2 · 1 2 · 1 2 · 1 2 1 2 1 4 · 1 4 · 1 4 + 3 4 · 3 4 · 3 4 Fair coin: Prob{end} = 1 − = 3 4 Biased coin: P{end} = 1 − = 9 16 . . 18. Let B = event both are girls; E = event oldest is = P(B) P(E) P(BE) P(E) girl; L = event at least one is a girl. (a) P(B|E) = = 1/4 1/2 (b) P(L) = 1 − P(no girls) = 1 − 1 4 = 1/4 3/4 P(B|L) = P(BL) P(L) P(B) P(L) = = 1 2 . , = 3 4 = 1 3 . 19. E = event at least 1 six P(E) = number of ways to get E number of sample pts = 11 36 D = event two faces are different P(D) = 1 − Prob(two faces the same) P(ED) = 1 − 6 P(D) 36 P(E|D) = = 5 6 = 10/36 5/6 = 1 3 . 20. Let E = event same number on exactly two of the dice; S = event all 3 numbers are the same; D = event all 3 numbers are different. These 3 events are mutually exclusive and define the whole sample space. Thus, 1 = P(D) + P(S) + P(E), P(S) = 6/216 = 1/36; for D have 6 possible values for first die, 5 for second, and 4 for third. ∴ Number of ways to get D = 6 · 5 · 4 = 120. P(D) = 120/216 = 20/36 ∴ P(E) = 1 − P(D) − P(S) = 5 12 = 1 − 20 36 − 1 36 . 21. Let C = event person is color blind.
Answers and Solutions 3 P(Male|C) = = P(C|Male) P(Male) P(C|Male P(Male) + P(C|Female) P(Female) .05 × .5 .05 × .5 + .0025 × .5 = 2500 2625 = 20 21 . 22. Let trial 1 consist of the first two points; trial 2 the next two points, and so on. The probability that each player wins one point in a trial is 2p(1 − p). Now a total of 2n points are played if the first (a − 1) trials all result in each player winning one of the points in that trial and the nth trial results in one of the players winning both points. By inde- pendence, we obtain that P{2n points are needed} = (2p(1 − p))n−1(p2 + (1 − p)2), n ≥ 1. The probability that A wins on trial n is (2p(1 − p))n−1 p2 and so P{A wins} = p2 (2p(1 − p))n−1 ∞∑ n=1 = p2 1 − 2p(1 − p) . 25. 23. P(E 1 )P(E 2 |E1)P(E 3 E2) P(E ) 1 P(E ) 1 · · · En). = P(E = P(E 1 1 |E1E2) · · · P(En|E1 · · · En−1) · · · P(E1 · · · En) P(E 1 · · · En−1) P(E E2E3) E2) 1 P(E 1 24. Let a signify a vote for A and b one for B. (a) P2,1 = P{a, a, b} = 1/3. (b) P3,1 = P{a, a} = (3/4)(2/3) = 1/2. (c) P3,2 = P{a, a, a} + P{a, a, b, a} = (3/5)(2/4)[1/3 + (2/3)(1/2)] = 1/5. (d) P4,1 = P{a, a} = (4/5)(3/4) = 3/5. (e) P4,2 = P{a, a, a} + P{a, a, b, a} = (4/6)(3/5)[2/4 + (2/4)(2/3)] = 1/3. (f) P4,3 = P{always ahead|a, a}(4/7)(3/6) = (2/7)[1 − P{a, a, a, b, b, b|a, a} − P{a, a, b, b|a, a} − P{a, a, b, a, b, b|a, a}] = (2/7)[1 − (2/5)(3/4)(2/3)(1/2) − (3/5)(2/4) − (3/5)(2/4)(2/3)(1/2)] = 1/7. (g) P5,1 = P{a, a} = (5/6)(4/5) = 2/3. (h) P5,2 = P{a, a, a} + P{a, a, b, a} = (5/7)(4/6)[(3/5) + (2/5)(3/4)] = 3/7. By the same reasoning we have that (i) P5,3 = 1/4, (j) P5,4 = 1/9. (k) In all the cases above, Pn,m = (a) P{pair} = P{second card is same n − n n + n . denomination as first} = 3/51. (b) P{pair|different suits} P{pair, different suits} P{different suits} = = P{pair}/P{different suits} = 3/51 39/51 = 1/13. 52 13 39 13 26. P(E P(E P(E P(E P(E 27. P(E 1 2 3 4 1 48 12 36 3 12 1 4 ) = 1 |E1) = |E1E2) = 2 1 |E1E2E3) = 1. E2E3E4) = 39 · 26 · 13 51 · 50 · 49 ) = 1 24 12 . . = 39 · 38 · 37 51 · 50 · 49 = 26 · 25 38 · 37 . = 13/25. 26 13 1 P(E2|E1) = 39/51, since 12 cards are in the ace of spades pile and 39 are not. |E1E2) = 26/50, since 24 cards are in the piles P(E of the two aces and 26 are in the other two piles. |E1E2E3) = 13/49. P(E 3 4 So P{ each pile has an ace} = (39/51)(26/50)(13/49).
Answers and Solutions 4 28. Yes. P(A|B) > P(A) is equivalent to P(AB) > P(E) = .6. P(A)P(B) which is equivalent to P(B|A) > P(B). (a) P(E|F) = 0. (b) P(E|F) = P(EF)/P(F) = P(E)/P(F) ≥ (c) P(E|F) = P(EF)/P(F) = P(F)/P(F) = 1. (a) P{George|exactly 1 hit} P{George, not Bill} P{G, not B} P{exactly 1} = P{G, not B} + P{B, not G)} 29. 30. = = (.4)(.3) (.4)(.3) + (.7)(.6) = 2/9. (b) P{G|hit} = P{G, hit}/P{hit} = P{G}/P{hit} = .4/[1 − (.3)(.6)] = 20/41. 31. Let S = event sum of dice is 7; F = event first die is 6. P(S) = 1 6 P(FS) = 1 36 = 1/36 1/6 = 1 6 . P(F|S) = P(F|S) P(S) 32. Let Ei = event person i selects own hat. Thus, ∑ P(Ei1Ei2 · · · Eik) (n − k)! i1<···
分享到:
收藏