logo资料库

Machine Learning for Evolution Strategies.pdf

第1页 / 共120页
第2页 / 共120页
第3页 / 共120页
第4页 / 共120页
第5页 / 共120页
第6页 / 共120页
第7页 / 共120页
第8页 / 共120页
资料共120页,剩余部分请下载后查看
Contents
Abstract
1 Introduction
1.1 Computational Intelligence
1.2 Optimization
1.3 Machine Learning and Big Data
1.4 Motivation
1.5 Benchmark Problems
1.6 Overview
1.7 Previous Work
1.8 Notations
1.9 Python
References
Part I Evolution Strategies
2 Evolution Strategies
2.1 Introduction
2.2 Evolutionary Algorithms
2.3 History
2.4 Recombination
2.5 Mutation
2.6 Selection
2.7 Rechenberg's 1/5th Success Rule
2.8 (1+1)-ES
2.9 Conclusions
References
3 Covariance Matrix Estimation
3.1 Introduction
3.2 Covariance Matrix Estimation
3.3 Algorithm
3.4 Related Work
3.5 Experimental Analysis
3.6 Conclusions
References
Part II Machine Learning
4 Machine Learning
4.1 Introduction
4.2 Prediction and Inference
4.3 Classification
4.4 Model Selection
4.5 Curse of Dimensionality
4.6 Bias-Variance Trade-Off
4.7 Feature Selection and Extraction
4.8 Conclusions
References
5 Scikit-Learn
5.1 Introduction
5.2 Data Management
5.3 Supervised Learning
5.4 Pre-processing Methods
5.5 Model Evaluation
5.6 Model Selection
5.7 Unsupervised Learning
5.8 Conclusions
Reference
Part III Supervised Learning
6 Fitness Meta-Modeling
6.1 Introduction
6.2 Nearest Neighbors
6.3 Algorithm
6.4 Related Work
6.5 Experimental Analysis
6.6 Conclusions
References
7 Constraint Meta-Modeling
7.1 Introduction
7.2 Support Vector Machines
7.3 Algorithm
7.4 Related Work
7.5 Experimental Analysis
7.6 Conclusions
References
Part IV Unsupervised Learning
8 Dimensionality Reduction Optimization
8.1 Introduction
8.2 Dimensionality Reduction
8.3 Principal Component Analysis
8.4 Algorithm
8.5 Related Work
8.6 Experimental Analysis
8.7 Conclusions
References
9 Solution Space Visualization
9.1 Introduction
9.2 Isometric Mapping
9.3 Algorithm
9.4 Related Work
9.5 Experimental Analysis
9.6 Conclusions
References
10 Clustering-Based Niching
10.1 Introduction
10.2 Clustering
10.3 Algorithm
10.4 Related Work
10.5 Experimental Analysis
10.6 Conclusions
References
Part V Ending
11 Summary and Outlook
11.1 Summary
11.2 Evolutionary Computation for Machine Learning
11.3 Outlook
References
Appendix ABenchmark Functions
Index
Studies in Big Data 20 Oliver Kramer Machine Learning for Evolution Strategies
Studies in Big Data Volume 20 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: kacprzyk@ibspan.waw.pl
About this Series The series “Studies in Big Data” (SBD) publishes new developments and advances in the various areas of Big Data- quickly and with a high quality. The intent is to cover the theory, research, development, and applications of Big Data, as embedded in the fields of engineering, computer science, physics, economics and life sciences. The books of the series refer to the analysis and understanding of large, complex, and/or distributed data sets generated from recent digital sources coming from sensors or other physical instruments as well as simulations, crowd sourcing, social networks or other internet transactions, such as emails or video click streams and other. The series contains monographs, lecture notes and edited volumes in Big Data spanning the areas of computational intelligence incl. neural networks, evolutionary computation, soft computing, fuzzy systems, as well as artificial intelligence, data mining, modern statistics and Operations research, as well as self-organizing systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/11970
Oliver Kramer Machine Learning for Evolution Strategies 123
Oliver Kramer Informatik Universität Oldenburg Oldenburg Germany ISSN 2197-6503 Studies in Big Data ISBN 978-3-319-33381-6 DOI 10.1007/978-3-319-33383-0 ISSN 2197-6511 (electronic) ISBN 978-3-319-33383-0 (eBook) Library of Congress Control Number: 2016938389 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. trademarks, service marks, etc. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland
Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Computational Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Machine Learning and Big Data . . . . . . . . . . . . . . . . . . . . . . 1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Previous Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 1.9 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Part I Evolution Strategies 2 3 Evolution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 2.4 Recombination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Rechenberg’s 1/5th Success Rule . . . . . . . . . . . . . . . . . . . . . . 2.7 (1+1)-ES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Covariance Matrix Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 3.2 Covariance Matrix Estimation . . . . . . . . . . . . . . . . . . . . . . . . Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 3 5 5 6 8 8 9 10 13 13 14 15 16 16 17 18 19 20 21 23 23 24 25 26 v
vi Contents Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Part II Machine Learning 4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Prediction and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 4.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Model Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 4.6 Bias-Variance Trade-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . Feature Selection and Extraction . . . . . . . . . . . . . . . . . . . . . . 4.7 4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Scikit-Learn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Supervised Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 5.4 Pre-processing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Model Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Model Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Part III Supervised Learning 6 7 Fitness Meta-Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Constraint Meta-Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 30 31 35 35 36 37 38 39 40 41 42 43 45 45 46 47 48 49 50 51 52 53 57 57 58 59 60 61 64 64 67 67 68 71 72
Contents Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Part IV Unsupervised Learning 8 9 Dimensionality Reduction Optimization. . . . . . . . . . . . . . . . . . . . . Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 8.2 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 8.6 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Solution Space Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isometric Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 9.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 73 75 75 79 79 80 80 82 83 84 86 87 89 89 90 92 93 94 96 97 10 Clustering-Based Niching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 10.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 10.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 10.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Part V Ending 11 Summary and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 11.2 Evolutionary Computation for Machine Learning . . . . . . . . . . . 113 11.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Appendix A: Benchmark Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
分享到:
收藏