OESTGES
Prelims-P372535.tex
15/3/2007
16: 33
Page xi
List of Figures
1.1 Typical received signal strength in a Rayleigh fading channel . . . . . . . . . . . . . . . . . . 5
1.2 Diversity gain in Rayleigh fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Diversity and array gains in Rayleigh fading channels . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Performance of transmit MRC and Alamouti schemes with two transmit
1.5 Performance of dominant eigenmode and Alamouti transmissions in a
antennas in i.i.d. Rayleigh fading channels (for BPSK modulation) . . . . . . . . . . . . 18
2 × 2 i.i.d. Rayleigh fading channel (with QPSK modulation) . . . . . . . . . . . . . . . . 24
2.1 A typical multipath scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Extension of Bello’s functions to the spatial and angular domains . . . . . . . . . . . . . 34
2.3 Typical Doppler spectra for mobile and fixed scenarios . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Copolar (solid) and cross-polar (dashed) field-radiation patterns
(in magnitude) of a plane monopolar antenna at 2.4 GHz . . . . . . . . . . . . . . . . . . . . 52
2.5 One-ring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6 Two-ring model (symmetric) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.7 Combined elliptical-ring model for 3 ellipses and a local scatterer
ring (the size of the disc and the circle have been increased for
better legibility) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.8 Illustration of exponential decay of mean cluster amplitude and ray
amplitude within clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.9 Mutual dipole impedance as a function of antenna spacing relative
to the wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.10 Field-radiation pattern (in magnitude) of the right-hand side antenna
for several inter-element spacings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1 XPD modeling: separation between space and polarization . . . . . . . . . . . . . . . . . . .79
3.2 Virtual channel representation of a 2× 4 channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3 Effective diversity measure in a 2× 2 Kronecker-structured system
as a function of transmit and receive correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4 Effective diversity measure in several Ricean MIMO channels . . . . . . . . . . . . . . . 92
3.5 Path configuration for scenario A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6 Path configuration for scenario B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.7 Correlation matrix distance for different scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.8 Channel correlations (including the Kronecker approximation of
3.9 Imaging of the scattering environment for scenario A via E|Hv|2
s1 and s2 as equal to rt) vs. receive antenna spacing d/λ . . . . . . . . . . . . . . . . . . . . . 98
(in dB scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
xi
OESTGES
Prelims-P372535.tex
15/3/2007
16: 33
Page xii
xii
3.10 Imaging of the scattering environment for scenario B via E|Hv|2
3.11 Mutual information vs. SNR for different models in two 8× 8 scattering
(in dB scale) 104
List of figures
scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1 Principle of water-filling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Capacity of various i.i.d. channels at 20 dB SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3 Ergodic capacity of 4× 4 i.i.d. Rayleigh channels with full and
partial channel knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4 Average mutual information of various correlated channels at 20 dB
SNR as a function of one/both cross-channel correlation(s) . . . . . . . . . . . . . . . . . 126
4.5 Average mutual information of diagonal channels at 15 dB SNR as a
function of the number of antennas at each side . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
4.6 Average mutual information of two finite scatterer channels at 20 dB SNR
as a function of the number of antennas at each side . . . . . . . . . . . . . . . . . . . . . . . 129
the transmit correlation |t| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
and ρ for nr = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
˜H= Hw, so K = 0 corresponds to a Rayleigh i.i.d. channel
4.7 Mutual information of various strategies at 0 dB SNR as a function of
4.8 Optimal fraction of power to non-beamforming mode as a function of |t|
4.9 Mutual information of Ricean 2× 2 channels for different K-factors
. . . . . . . . . . . . . . . . 135
4.10 Mutual information of Ricean 2× 2 uni- and dual-polarized channels . . . . . . . . 137
4.11 Mutual information of uni- and dual-polarized 2× 2 channels for
4.12 Variation of |a|2 +|b|2, 2[ab
] and log2 det
4.13 Asymptotic diversity-multiplexing trade-off g
different K-factors and correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
as a function of dt . . . . . 140
MtMH
∗
t
d (gs) in i.i.d. Rayleigh
fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
∗
4.14 Outage probability Pout(R) as a function of the transmission rate R for
both fixed and variable rate scaling as R= gs log2 (ρ) in 2× 2 MIMO
i.i.d. Rayleigh fading channels (courtesy of H. Yao [YW03]) . . . . . . . . . . . . . . . . 144
4.15 Diversity-multiplexing trade-off at realistic SNR (5 and 10 dB) of a 2× 2 MIMO
i.i.d. Rayleigh fading channel (courtesy of R. Narasimhan [Nar05]) . . . . . . . . . 150
4.16 Normalized maximum diversity gain ˆg
∗
d (0, ρ)/(ntnr) as a function of
4.17 Diversity-multiplexing trade-off at realistic SNR (5 and 10 dB) in
SNR in i.i.d. Rayleigh fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
2× 2 MIMO transmit correlated Rayleigh fading channels (courtesy of
R. Narasimhan [Nar06]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.18 Diversity-multiplexing trade-off at realistic SNR (10 dB) in 2× 2 MIMO
transmit correlated Rayleigh and Ricean (K = 5 and 10 dB) fading channels
(courtesy of R. Narasimhan [Nar06]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1 General overview of a space–time encoder of a MIMO system . . . . . . . . . . . . . . 156
5.2 (a) The sphere is centered at the received vector and contains the lattice
points to be enumerated; (b) The sphere is transformed into an ellipsoid in the
T coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
OESTGES
Prelims-P372535.tex
15/3/2007
16: 33
Page xiii
List of figures
xiii
5.5 Bit error rate (BER) of several LDCs in i.i.d. Rayleigh slow fading
5.4 Block error rate of the Alamouti code in i.i.d. Rayleigh slow fading
5.6 Block error rate of the tilted QAM code in i.i.d. Rayleigh slow fading
5.3 Bit error rate (BER) of spatial multiplexing with various receivers (ML,
(ordered) ZF SIC, ZF) in i.i.d. Rayleigh slow fading channels with nt = 2
and nr = 2 for 4 bits/s/Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
channels with nr = 2 in a R= 2 log2 (M )= 4, 8, 12, 16 bits/s/Hz transmissions
using M 2-QAM constellations of sizes M = 4, 16, 64, 256 (courtesy of
H. Yao [YW03]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
channels with nt = 2 and nr = 2 for 4 bits/s/Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
channels with nr = 2 in a R= 2nt log2 (M )= 4, 8, . . . , 32-bit/s/Hz
transmissions using M 2-QAM constellations of sizes M = 2, 4, 8, . . . , 256
(courtesy of H. Yao [YW03]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
slow fading channels with nr = 1 and nr = 2 in a 4-bit/s/Hz transmission . . . . . 208
in a 2× 2 i.i.d. Rayleigh fading MIMO channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Rayleigh slow fading channels with nt = 2 and nr = 2 in a 4-bit/s/Hz
transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
fading channels with nr = 2, 3, 4 in a 4-bit/s/Hz transmission . . . . . . . . . . . . . . . 211
5.11 Labeling of the QPSK constellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.12 STTC encoder for two transmit antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.13 Trellis representation of QPSK 4-state 2 bits/s/Hz space–time trellis codes
5.10 Bit error rate (BER) of SM, Dayal and Alamouti codes in i.i.d. Rayleigh slow
5.9 Bit error rate (BER) of several algebraic space–time block codes in i.i.d.
5.8 Diversity-multiplexing trade-off achieved by several space–time codes
5.7 Bit error rate (BER) of Dayal and Alamouti codes in i.i.d. Rayleigh
for two transmit antennas: (a) ‘TSC’ code (delay-diversity code) [Wit93,
SW94, TSC98]; (b) ‘BBH’ code [BBH00]; (c) ‘CYV’ code [CYV01]; (d) ‘FVY’
code [FVY01] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.14 Trellis representation and generator matrix of a new QPSK 8-state
5.16 Frame error rate of 4-state and 8-state ‘CYV’ and ‘TSC’ codes in i.i.d.
5.15 Frame error rate of several 4-state STTC in i.i.d. Rayleigh slow fading
2-space–time trellis code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
channels with nt = 2 and nr = 2, 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Rayleigh slow fading channels with nt = 2 and nr = 4 . . . . . . . . . . . . . . . . . . . . . . 220
with nt = 2 and nr = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
5.17 Frame error rate of several 4-state STTC in i.i.d. fast fading channels
6.1 Visualization of the impact of the scattering richness and inter-element
6.2 Gt(θt|ck) (θt varying over 360
spacing on MIMO system performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
) for the four possible phase shifts
◦
6.3 Gt(θt|ck) (θt varying over 360
between two transmitted QPSK symbols and MT inter-element
spacing dt/λ= 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
two transmitted QPSK symbols and MT inter-element spacing dt/λ= 0.5 . . . . 229
) for the four possible phase shifts between
◦
OESTGES
Prelims-P372535.tex
15/3/2007
16: 33
Page xiv
xiv
List of figures
6.4 Symbol error rate as a function of the phase shift (in radians) between the
6.5 Performance of full-rank LDCs in i.i.d. and correlated channels with
6.6 Performance of rank-deficient LDCs on i.i.d. and correlated channels
6.7 Performance of STTCs on i.i.d. and correlated channels with nt = 2
transmitted QPSK symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
nt = 2 and nr = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
with nt = 2 and nr = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
and nr = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
channels with nt = 2 and nr = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Ricean fading channels with K = 4 and K = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
channels with K = 4 and K = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
6.8 Performance of STTCs on i.i.d. and correlated Rayleigh fast fading
6.9 Performance of rank-deficient spatial multiplexing schemes on 2× 2
6.10 Performance of approximately universal codes on 2× 2 Ricean fading
6.11 Performance of QPSK spatial multiplexing for uni- and dual-polarized
transmissions as a function of t or r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
6.12 Performance of QPSK spatial multiplexing in various Ricean channels for
uni- and dual-polarized transmissions as a function of antenna XPD at
10 dB SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.1 Repetition coding for L= 2 with rate R= 4 bits/s/Hz . . . . . . . . . . . . . . . . . . . . . . . 283
7.2 Permutation coding for L= 2 with rate R= 4 bits/s/Hz . . . . . . . . . . . . . . . . . . . . . 283
7.3 Mutual coupling effects on the Gsum(θt|C, at(θt)) of a SM scheme
with QPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
7.4 Mutual coupling effects on the SER of a SM scheme with QPSK . . . . . . . . . . . . 295
7.5 SER as a function of the phase of t for |t|= 0.95 (up) and SER as a function
of |t| with the phase of t equal to 0 (down) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
7.6 Bit error rate of several 2× 2 SM schemes in i.i.d. and correlated Rayleigh
fading channels (with two antenna orientations θt = 0 and θt = 0.63) . . . . . . . . . 305
7.7 Gsum(θt|C, at(θt)) of several SM schemes as a function of the angle of
7.8 Gsum(θt|C, at(θt)) of several LDCs as a function of the angle of departure
7.9 Gsum(θt|C, at(θt)) of several LDCs as a function of the angle of departure
7.10 Gsum(θt|C, at(θt)) of several LDCs achieving the multiplexing diversity
7.11 Gsum(θt|C, at(θt)) of several 4- and 8-state STTCs as a function of the
trade-off [ZT03] as a function of the angle of departure θt [rad] . . . . . . . . . . . . . 309
departure θt [rad] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
θt [rad] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
θt [rad] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.12 Frame error rate of several 4-state STTCs in i.i.d. and correlated Rayleigh
angle of departure θt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
fading channels with nt = 2 and nr = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
fading channels with nt = 2 and nr = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
7.13 Frame error rate of several 8-state STTCs in i.i.d. and correlated Rayleigh
OESTGES
Prelims-P372535.tex
15/3/2007
16: 33
Page xv
List of figures
xv
7.14 Gsum(θt|C, at(θt)) of several 4-state STTCs as a function of the angle
7.15 Gproduct(θt|C, at(θt)) of several 4-state STTCs as a function of the angle of
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
of departure θt
7.16 Frame error rate of several 4-state STTCs in i.i.d. and correlated Rayleigh fast
departure θt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
fading channels with nt = 2 and nr = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
8.1 Overview of precoder P: UP acts as a multi-mode beamformer, C
is the
8.2 Performance of a transmit correlation based precoded Alamouti scheme in
8.3 Performance of a transmit correlation based precoded Alamouti scheme in
codeword being shaped by P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
2× 2 transmit correlated (t = 0.7) Rayleigh channels . . . . . . . . . . . . . . . . . . . . . . .328
2× 2 transmit correlated (t = 0.95) Rayleigh channels . . . . . . . . . . . . . . . . . . . . . 328
channel (nt = 2, nr = 4), with a high transmit correlation using two
precoding schemes: U˜E· = Int and ˜E
· = arg min ˜E=0 det
8.4 Performance of a 4-state STTC ‘CYV’ in a correlated Rayleigh fading
8.5 QPSK (◦), constellation perceived at the receiver when |t|= 1 and QPSK
in [SP02]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
used with precoder I (), precoder II (+) and precoder III ( • ) . . . . . . . . . . . . . . 345
min achieved by the three precoders with QPSK constellation as a function
8.6 D2
8.7 Bit error rate of spatial multiplexing as a function of the transmit correlation
of the magnitude of the transmit correlation coefficient . . . . . . . . . . . . . . . . . . . . . 346
coefficient t in 2× 2 correlated MIMO channels with and without
precoding (SNR= 15 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
˜E
(proposed
8.8 Bit error rate of spatial multiplexing in correlated channels with and without
precoding: precoders I, II and III exploit the knowledge of t, while the robust
precoder has been designed following the Gsum criterion in Chapter 7 . . . . . . . . 347
8.9 Signal constellations S and K1 for a 4-bit/s/Hz system using two transmit
8.10 Required SNR as a function of the inter-element distance over a
antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Rayleigh channel for the classical and the new constellations in a 2× 2
4-bit/s/Hz transmission in a broadside configuration . . . . . . . . . . . . . . . . . . . . . . . 350
8.11 Symbol error rate (SER) of a 3× 3 MIMO system using 2-bit and 6-bit
quantized BPSK-based dominant eigenmode transmissions (courtesy of
D. Love [LHS03]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
8.12 Symbol error rate (SER) of a 8× 1 MISO system using 6-bit quantized
i.i.d. and rotated dominant eigenmode transmissions in correlated Rayleigh
channels (courtesy of D. Love [LH06]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
8.13 Symbol error rate (SER) of 3-bit and 6-bit precoded Alamouti schemes in 2× 4
8.14 Symbol vector error rate (SVER) of a 6-bit precoded SM scheme in i.i.d.
i.i.d. Rayleigh fading channels (courtesy of D. Love [LH05a]) . . . . . . . . . . . . . . 362
Rayleigh fading channels with nt = 4 and nr = 2 (courtesy of
D. Love [LH05b]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
OESTGES
Prelims-P372535.tex
15/3/2007
16: 33
Page xvi
xvi
List of figures
9.1 OFDM modulator and demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
9.2 Block diagram of a MIMO-OFDM system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
9.3 FER of the 16-state ‘FVY’ code for L= 2, 3 and 4 in uniformly distributed
i.i.d. Rayleigh channels with and without interleaver . . . . . . . . . . . . . . . . . . . . . . . 392
9.4 Cyclic delay diversity in MIMO-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
B.1 Distribution of a randomly selected eigenvalue of W in several scenarios . . . . 408
D.1 Equivalent circuit of the two coupled antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
OESTGES
Prelims-P372535.tex
15/3/2007
16: 33
Page xvii
List of Tables
2.1 Typical parameters for the extended Saleh-Valenzuela model . . . . . . . . . . . . . . . . . . 62
2.2 SUI-4 channel parameters (omnidirectional antennas) . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3 SUI-4 channel parameters for a 30 degree beamwidth antenna at the user’s end . . 65
3.1 (R, Rmodel) for different models in scenarios A and B . . . . . . . . . . . . . . . . . . . . . . 102
3.2 Correlation matrix distance dcorr(R, Rmodel) in scenarios A and B . . . . . . . . . . . . . 102
3.3 (R, Rmodel) for different models in scenarios A and B . . . . . . . . . . . . . . . . . . . . . . 102
3.4 Correlation matrix distance dcorr(R, Rmodel) in scenarios A and B . . . . . . . . . . . . . 102
3.5 (R, Rmodel) for different models in scenarios A and B . . . . . . . . . . . . . . . . . . . . . . 105
3.6 Correlation matrix distance dcorr(R, Rmodel) in scenarios A and B . . . . . . . . . . . . . 105
5.1 Performance of various STTCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.1 Optimal precoder P for 4, 8 and 16 PSK SM transmission with nt = 2 . . . . . . . . . 304
8.1 Codebook for quantized dominant eigenmode transmission for nt = 3 and
np = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
C.1 SUI-1 channel parameters (omnidirectional antennas) . . . . . . . . . . . . . . . . . . . . . . . 409
C.2 SUI-2 channel parameters (omnidirectional antennas) . . . . . . . . . . . . . . . . . . . . . . . 409
C.3 SUI-3 channel parameters (omnidirectional antennas) . . . . . . . . . . . . . . . . . . . . . . . 410
C.4 SUI-4 channel parameters (omnidirectional antennas) . . . . . . . . . . . . . . . . . . . . . . . 410
C.5 SUI-5 channel parameters (omnidirectional antennas) . . . . . . . . . . . . . . . . . . . . . . . 410
C.6 SUI-6 channel parameters (omnidirectional antennas) . . . . . . . . . . . . . . . . . . . . . . . 410
xvii