ANSYS Fluent Tutorial Guide
Table of Contents
Using This Manual
1. What’s In This Manual
2. How To Use This Manual
2.1. For the Beginner
2.2. For the Experienced User
3. Typographical Conventions Used In This Manual
Chapter 1: Fluid Flow in an Exhaust Manifold
1.1. Introduction
1.2. Prerequisites
1.3. Problem Description
1.4. Setup and Solution
1.4.1. Preparation
1.4.2. Meshing Workflow
1.4.3. General Settings
1.4.4. Solver Settings
1.4.5. Models
1.4.6. Materials
1.4.7. Cell Zone Conditions
1.4.8. Boundary Conditions
1.4.9. Solution
1.4.10. Postprocessing
1.5. Summary
Chapter 2: Fluid Flow and Heat Transfer in a Mixing Elbow
2.1. Introduction
2.2. Prerequisites
2.3. Problem Description
2.4. Setup and Solution
2.4.1. Preparation
2.4.2. Launching ANSYS Fluent
2.4.3. Reading the Mesh
2.4.4. Setting Up Domain
2.4.5. Setting Up Physics
2.4.6. Solving
2.4.7. Displaying the Preliminary Solution
2.4.8. Adapting the Mesh
2.5. Summary
Chapter 3: Postprocessing
3.1. Introduction
3.2. Prerequisites
3.3. Problem Description
3.4. Setup and Solution
3.4.1. Preparation
3.4.2. Reading the Mesh
3.4.3. Manipulating the Mesh in the Viewer
3.4.4. Adding Lights
3.4.5. Creating Isosurfaces
3.4.6. Generating Contours
3.4.7. Generating Velocity Vectors
3.4.8. Creating an Animation
3.4.9. Displaying Pathlines
3.4.10. Creating a Scene With Vectors and Contours
3.4.11. Advanced Overlay of Pathlines on a Scene
3.4.12. Creating Exploded Views
3.4.13. Animating the Display of Results in Successive Streamwise Planes
3.4.14. Generating XY Plots
3.4.15. Creating Annotation
3.4.16. Saving Picture Files
3.4.17. Generating Volume Integral Reports
3.5. Summary
Chapter 4: Modeling Periodic Flow and Heat Transfer
4.1. Introduction
4.2. Prerequisites
4.3. Problem Description
4.4. Setup and Solution
4.4.1. Preparation
4.4.2. Mesh
4.4.3. General Settings
4.4.4. Models
4.4.5. Materials
4.4.6. Cell Zone Conditions
4.4.7. Periodic Conditions
4.4.8. Boundary Conditions
4.4.9. Solution
4.4.10. Postprocessing
4.5. Summary
4.6. Further Improvements
Chapter 5: Modeling External Compressible Flow
5.1. Introduction
5.2. Prerequisites
5.3. Problem Description
5.4. Setup and Solution
5.4.1. Preparation
5.4.2. Mesh
5.4.3. Solver
5.4.4. Models
5.4.5. Materials
5.4.6. Boundary Conditions
5.4.7. Operating Conditions
5.4.8. Solution
5.4.9. Postprocessing
5.5. Summary
5.6. Further Improvements
Chapter 6: Modeling Transient Compressible Flow
6.1. Introduction
6.2. Prerequisites
6.3. Problem Description
6.4. Setup and Solution
6.4.1. Preparation
6.4.2. Reading and Checking the Mesh
6.4.3. Solver and Analysis Type
6.4.4. Models
6.4.5. Materials
6.4.6. Operating Conditions
6.4.7. Boundary Conditions
6.4.8. Solution: Steady Flow
6.4.9. Enabling Time Dependence and Setting Transient Conditions
6.4.10. Specifying Solution Parameters for Transient Flow and Solving
6.4.11. Saving and Postprocessing Time-Dependent Data Sets
6.5. Summary
6.6. Further Improvements
Chapter 7: Modeling Flow Through Porous Media
7.1. Introduction
7.2. Prerequisites
7.3. Problem Description
7.4. Setup and Solution
7.4.1. Preparation
7.4.2. Mesh
7.4.3. General Settings
7.4.4. Models
7.4.5. Materials
7.4.6. Cell Zone Conditions
7.4.7. Boundary Conditions
7.4.8. Solution
7.4.9. Postprocessing
7.5. Summary
7.6. Further Improvements
Chapter 8: Modeling Radiation and Natural Convection
8.1. Introduction
8.2. Prerequisites
8.3. Problem Description
8.4. Setup and Solution
8.4.1. Preparation
8.4.2. Reading and Checking the Mesh
8.4.3. Solver and Analysis Type
8.4.4. Models
8.4.5. Defining the Materials
8.4.6. Operating Conditions
8.4.7. Boundary Conditions
8.4.8. Obtaining the Solution
8.4.9. Postprocessing
8.4.10. Comparing the Contour Plots after Varying Radiating Surfaces
8.4.11. S2S Definition, Solution, and Postprocessing with Partial Enclosure
8.5. Summary
8.6. Further Improvements
Chapter 9: Using a Single Rotating Reference Frame
9.1. Introduction
9.2. Prerequisites
9.3. Problem Description
9.4. Setup and Solution
9.4.1. Preparation
9.4.2. Mesh
9.4.3. General Settings
9.4.4. Models
9.4.5. Materials
9.4.6. Cell Zone Conditions
9.4.7. Boundary Conditions
9.4.8. Solution Using the Standard k- ε Model
9.4.9. Postprocessing for the Standard k- ε Solution
9.4.10. Solution Using the RNG k- ε Model
9.4.11. Postprocessing for the RNG k- ε Solution
9.5. Summary
9.6. Further Improvements
9.7. References
Chapter 10: Using Multiple Reference Frames
10.1. Introduction
10.2. Prerequisites
10.3. Problem Description
10.4. Setup and Solution
10.4.1. Preparation
10.4.2. Mesh
10.4.3. Models
10.4.4. Materials
10.4.5. Cell Zone Conditions
10.4.6. Boundary Conditions
10.4.7. Solution
10.4.8. Postprocessing
10.5. Summary
10.6. Further Improvements
Chapter 11: Using Sliding Meshes
11.1. Introduction
11.2. Prerequisites
11.3. Problem Description
11.4. Setup and Solution
11.4.1. Preparation
11.4.2. Mesh
11.4.3. General Settings
11.4.4. Models
11.4.5. Materials
11.4.6. Cell Zone Conditions
11.4.7. Boundary Conditions
11.4.8. Operating Conditions
11.4.9. Mesh Interfaces
11.4.10. Solution
11.4.11. Postprocessing
11.5. Summary
11.6. Further Improvements
Chapter 12: Using Overset and Dynamic Meshes
12.1. Prerequisites
12.2. Problem Description
12.3. Preparation
12.4. Mesh
12.5. Overset Interface Creation
12.6. Steady-State Case Setup
12.6.1. General Settings
12.6.2. Models
12.6.3. Materials
12.6.4. Operating Conditions
12.6.5. Boundary Conditions
12.6.6. Reference Values
12.6.7. Solution
12.7. Unsteady Setup
12.7.1. General Settings
12.7.2. Compile the UDF
12.7.3. Dynamic Mesh Settings
12.7.4. Report Generation for Unsteady Case
12.7.5. Run Calculations for Unsteady Case
12.7.6. Overset Solution Checking
12.7.7. Postprocessing
12.7.8. Diagnosing an Overset Case
12.8. Summary
Chapter 13: Modeling Species Transport and Gaseous Combustion
13.1. Introduction
13.2. Prerequisites
13.3. Problem Description
13.4. Background
13.5. Setup and Solution
13.5.1. Preparation
13.5.2. Mesh
13.5.3. General Settings
13.5.4. Models
13.5.5. Materials
13.5.6. Boundary Conditions
13.5.7. Initial Reaction Solution
13.5.8. Postprocessing
13.5.9. NOx Prediction
13.6. Summary
13.7. Further Improvements
Chapter 14: Using the Eddy Dissipation and Steady Diffusion Flamelet Combustion Models
14.1. Introduction
14.2. Prerequisites
14.3. Problem Description
14.4. Setup and Solution
14.4.1. Preparation
14.4.2. Mesh
14.4.3. Solver Settings
14.4.4. Models
14.4.5. Boundary Conditions
14.4.6. Solution
14.4.7. Postprocessing for the Eddy-Dissipation Solution
14.5. Steady Diffusion Flamelet Model Setup and Solution
14.5.1. Models
14.5.2. Boundary Conditions
14.5.3. Solution
14.5.4. Postprocessing for the Steady Diffusion Flamelet Solution
14.6. Summary
Chapter 15: Modeling Surface Chemistry
15.1. Introduction
15.2. Prerequisites
15.3. Problem Description
15.4. Setup and Solution
15.4.1. Preparation
15.4.2. Reading and Checking the Mesh
15.4.3. Solver and Analysis Type
15.4.4. Specifying the Models
15.4.5. Defining Materials and Properties
15.4.6. Specifying Boundary Conditions
15.4.7. Setting the Operating Conditions
15.4.8. Simulating Non-Reacting Flow
15.4.9. Simulating Reacting Flow
15.4.10. Postprocessing the Solution Results
15.5. Summary
15.6. Further Improvements
Chapter 16: Modeling Evaporating Liquid Spray
16.1. Introduction
16.2. Prerequisites
16.3. Problem Description
16.4. Setup and Solution
16.4.1. Preparation
16.4.2. Mesh
16.4.3. Solver
16.4.4. Models
16.4.5. Materials
16.4.6. Boundary Conditions
16.4.7. Initial Solution Without Droplets
16.4.8. Creating a Spray Injection
16.4.9. Solution
16.4.10. Postprocessing
16.5. Summary
16.6. Further Improvements
Chapter 17: Using the VOF Model
17.1. Introduction
17.2. Prerequisites
17.3. Problem Description
17.4. Setup and Solution
17.4.1. Preparation
17.4.2. Reading and Manipulating the Mesh
17.4.3. General Settings
17.4.4. Models
17.4.5. Materials
17.4.6. Phases
17.4.7. Operating Conditions
17.4.8. User-Defined Function (UDF)
17.4.9. Boundary Conditions
17.4.10. Solution
17.4.11. Postprocessing
17.5. Summary
17.6. Further Improvements
Chapter 18: Modeling Cavitation
18.1. Introduction
18.2. Prerequisites
18.3. Problem Description
18.4. Setup and Solution
18.4.1. Preparation
18.4.2. Reading and Checking the Mesh
18.4.3. Solver Settings
18.4.4. Models
18.4.5. Materials
18.4.6. Phases
18.4.7. Boundary Conditions
18.4.8. Operating Conditions
18.4.9. Solution
18.4.10. Postprocessing
18.5. Summary
18.6. Further Improvements
Chapter 19: Using the Multiphase Models
19.1. Introduction
19.2. Prerequisites
19.3. Problem Description
19.4. Setup and Solution
19.4.1. Preparation
19.4.2. Mesh
19.4.3. Solver Settings
19.4.4. Models
19.4.5. Materials
19.4.6. Phases
19.4.7. Cell Zone Conditions
19.4.8. Boundary Conditions
19.4.9. Solution
19.4.10. Postprocessing
19.5. Summary
Chapter 20: Modeling Solidification
20.1. Introduction
20.2. Prerequisites
20.3. Problem Description
20.4. Setup and Solution
20.4.1. Preparation
20.4.2. Reading and Checking the Mesh
20.4.3. Specifying Solver and Analysis Type
20.4.4. Specifying the Models
20.4.5. Defining Materials
20.4.6. Setting the Cell Zone Conditions
20.4.7. Setting the Boundary Conditions
20.4.8. Solution: Steady Conduction
20.4.9. Solution: Transient Flow and Heat Transfer
20.5. Summary
20.6. Further Improvements
Chapter 21: Using the Eulerian Granular Multiphase Model with Heat Transfer
21.1. Introduction
21.2. Prerequisites
21.3. Problem Description
21.4. Setup and Solution
21.4.1. Preparation
21.4.2. Mesh
21.4.3. Solver Settings
21.4.4. Models
21.4.5. UDF
21.4.6. Materials
21.4.7. Phases
21.4.8. Boundary Conditions
21.4.9. Solution
21.4.10. Postprocessing
21.5. Summary
21.6. Further Improvements
21.7. References
Chapter 22: Modeling One-Way Fluid-Structure Interaction (FSI) Within Fluent
22.1. Introduction
22.2. Prerequisites
22.3. Problem Description
22.4. Setup and Solution
22.4.1. Preparation
22.4.2. Structural Model
22.4.3. Materials
22.4.4. Cell Zone Conditions
22.4.5. Boundary Conditions
22.4.6. Solution
22.4.7. Postprocessing
22.5. Summary
Chapter 23: Modeling Two-Way Fluid-Structure Interaction (FSI) Within Fluent
23.1. Introduction
23.2. Prerequisites
23.3. Problem Description
23.4. Setup and Solution
23.4.1. Preparation
23.4.2. Solver and Analysis Type
23.4.3. Structural Model
23.4.4. Materials
23.4.5. Cell Zone Conditions
23.4.6. Boundary Conditions
23.4.7. Dynamic Mesh Zones
23.4.8. Solution Animations
23.4.9. Solution
23.4.10. Postprocessing
23.5. Summary
Chapter 24: Using the Adjoint Solver – 2D Laminar Flow Past a Cylinder
24.1. Introduction
24.2. Prerequisites
24.3. Problem Description
24.4. Setup and Solution
24.4.1. Step 1: Preparation
24.4.2. Step 2: Define Observables
24.4.3. Step 3: Compute the Drag Sensitivity
24.4.4. Step 4: Postprocess and Export Drag Sensitivity
24.4.4.1. Boundary Condition Sensitivity
24.4.4.2. Momentum Source Sensitivity
24.4.4.3. Shape Sensitivity
24.4.4.4. Exporting Drag Sensitivity Data
24.4.5. Step 5: Compute Lift Sensitivity
24.4.6. Step 6: Modify the Shape
24.5. Summary
Chapter 25: Simulating a Single Battery Cell Using the MSMD Battery Model
25.1. Introduction
25.2. Prerequisites
25.3. Problem Description
25.4. Setup and Solution
25.4.1. Preparation
25.4.2. Reading and Scaling the Mesh
25.4.3. Loading the MSMD battery Add-on
25.4.4. NTGK Battery Model Setup
25.4.4.1. Specifying Solver and Models
25.4.4.2. Defining New Materials for Cell and Tabs
25.4.4.3. Defining Cell Zone Conditions
25.4.4.4. Defining Boundary Conditions
25.4.4.5. Specifying Solution Settings
25.4.4.6. Obtaining Solution
25.4.5. Postprocessing
25.4.6. Simulating the Battery Pulse Discharge Using the ECM Model
25.4.7. Using the Reduced Order Method (ROM)
25.4.8. External and Internal Short-Circuit Treatment
25.4.8.1. Setting up and Solving a Short-Circuit Problem
25.4.8.2. Postprocessing
25.5. Summary
25.6. Appendix
25.7. References
Chapter 26: Simulating a 1P3S Battery Pack Using the MSMD Battery Model
26.1. Introduction
26.2. Prerequisites
26.3. Problem Description
26.4. Setup and Solution
26.4.1. Preparation
26.4.2. Reading and Scaling the Mesh
26.4.3. Loading the MSMD battery Add-on
26.4.4. Battery Model Setup
26.4.4.1. Specifying Solver and Models
26.4.4.2. Defining New Materials
26.4.4.3. Defining Cell Zone Conditions
26.4.4.4. Defining Boundary Conditions
26.4.4.5. Specifying Solution Settings
26.4.4.6. Obtaining Solution
26.4.5. Postprocessing
26.5. Summary
Chapter 27: In-Flight Icing Tutorial Using Fluent Icing
27.1. Fluent Airflow on the NACA0012 Airfoil
27.2. Flow Solution on the Rough NACA0012 Airfoil
27.3. Droplet Impingement on the NACA0012
27.3.1. Monodispersed Calculation
27.3.2. Langmuir-D Distribution
27.3.3. Post-Processing Using Quick-View
27.4. Fluent Icing Ice Accretion on the NACA0012
27.5. Postprocessing an Ice Accretion Solution Using CFD-Post Macros
27.6. Multi-Shot Ice Accretion with Automatic Mesh Displacement
27.7. Multi-Shot Ice Accretion with Automatic Mesh Displacement – Postprocessing Using CFD-Post