logo资料库

sallen-key 滤波器设计资料1.pdf

第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
资料共18页,剩余部分请下载后查看
Analysis of the SallenĆKey Architecture Application Report July 1999 – Revised September 2002 Mixed Signal Products SLOA024B
IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright  2002, Texas Instruments Incorporated
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Contents 2 Generalized Circuit Analysis 2.1 Gain Block Diagram 2.2 Ideal Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Low-Pass Circuit 3.1 Simplification 1: Set Filter Components as Ratios 3.2 Simplification 2: Set Filter Components as Ratios and Gain = 1 3.3 Simplification 3: Set Resistors as Ratios and Capacitors Equal 3.4 Simplification 4: Set Filter Components Equal 3.5 Nonideal Circuit Operation 3.6 Simulation and Lab Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 3 4 5 5 5 5 6 6 4 High-Pass Circuit 4.1 Simplification 1: Set Filter Components as Ratios 4.2 Simplification 2: Set Filter Components as Ratios and Gain=1 4.3 Simplification 3: Set Resistors as Ratios and Capacitors Equal 4.4 Simplification 4: Set Filter Components as Equal 4.5 Nonideal Circuit Operation 4.6 Lab Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 10 10 10 11 11 5 Summary and Comments About Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Analysis of the Sallen-Key Architecture iii
Figures List of Figures 1 Basic Second Order Low-Pass Filter 2 Unity Gain Sallen-Key Low-Pass Filter 3 Generalized Sallen-Key Circuit 4 Gain-Block Diagram of the Generalized Sallen-Key Filter 5 Low-Pass Sallen-Key Circuit 6 Nonideal Effect of Amplifier Output Impedance and Transfer Function 7 Test Circuits 8 Effect of Output Impedance 9 High-Pass Sallen-Key Circuit 10 Model of High-Pass Sallen-Key Filter Above fc 11 High-Pass Sallen-Key Filter Using THS3001 12 Frequency Response of High-Pass Sallen-Key Filter Using THS3001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2 3 4 6 7 8 9 11 12 12 iv SLOA024B
Analysis of the Sallen-Key Architecture James Karki ABSTRACT This application report discusses the Sallen-Key architecture. The report gives a general overview and derivation of the transfer function, followed by detailed discussions of low-pass and high-pass filters, including design information, and ideal and non-ideal operation. To illustrate the limitations of real circuits, data on low-pass and high-pass filters using the Texas Instruments THS3001 is included. Finally, component selection is discussed. 1 Introduction Figure 1 shows a two-stage RC network that forms a second order low-pass filter. This filter is limited because its Q is always less than 1/2. With R1=R2 and C1=C2, Q=1/3. Q approaches the maximum value of 1/2 when the impedance of the second RC stage is much larger than the first. Most filters require Qs larger than 1/2. VI R1 R2 C2 VO C1 = Vo Vi ) 1C2R2C1Rs ( 2 + 1 + ( 1C1R1C2R2C1Rs + ) 1 + Figure 1. Basic Second Order Low-Pass Filter Larger Qs are attainable by using a positive feedback amplifier. If the positive feedback is controlled—localized to the cut-off frequency of the filter—almost any Q can be realized, limited mainly by the physical constraints of the power supply and component tolerances. Figure 2 shows a unity gain amplifier used in this manner. Capacitor C2, no longer connected to ground, provides a positive feedback path. In 1955, R. P. Sallen and E. L. Key described these filter circuits, and hence they are generally known as Sallen-Key filters. R1 VI R2 C2 C1 + – VO Figure 2. Unity Gain Sallen-Key Low-Pass Filter The operation can be described qualitatively: • At low frequencies, where C1 and C2 appear as open circuits, the signal is simply buffered to the output. • At high frequencies, where C1 and C2 appear as short circuits, the signal is shunted to ground at the amplifier’s input, the amplifier amplifies this input to its output, and the signal does not appear at Vo. • Near the cut-off frequency, where the impedance of C1 and C2 is on the same order as R1 and R2, positive feedback through C2 provides Q enhancement of the signal. 1
Generalized Circuit Analysis 2 Generalized Circuit Analysis The circuit shown in Figure 3 is a generalized form of the Sallen-Key circuit, where generalized impedance terms, Z, are used for the passive filter components, and R3 and R4 set the pass–band gain. Vf VI Z1 Z2 Z4 Vp Vn + – 3 Z VO R4 R3 Figure 3. Generalized Sallen-Key Circuit To find the circuit solution for this generalized circuit, find the mathematical relationships between Vi, Vo, Vp, and Vn, and construct a block diagram. KCL at Vf: Vfǒ 1 KCL at Vp: Vpǒ 1 Z1 ) 1 Z2 ) Z4Ǔ + Viǒ 1 1 Z1Ǔ ) Vpǒ 1 Z2Ǔ ) Voǒ 1 Z4Ǔ Z2 ) Z3Ǔ + Vfǒ 1 1 Z2Ǔ å Vf + Vpǒ1 ) Z2 Z3Ǔ Substitute Equation (2) into Equation (1) and solve for Vp: Vp + Viǒ Z2Z3Z4 Z2Z3Z4 ) Z1Z2Z4 ) Z1Z2Z3 ) Z2Z2Z4 ) Z2Z2Z1Ǔ ) Z2Z3Z4 ) Z1Z2Z4 ) Z1Z2Z3 ) Z2Z2Z4 ) Z2Z2Z1Ǔ Z1Z2Z3 Voǒ KCL at Vn: Vnǒ 1 R3 ) R4Ǔ + Voǒ 1 1 R4Ǔ å Vn + Voǒ R3 R3 ) R4Ǔ 2.1 Gain Block Diagram By letting: a(f) = the open-loop gain of the amplifier, b + ǒ R3 c + Z2Z3Z4 ) Z1Z2Z4 ) Z1Z2Z3 ) Z2Z2Z4 ) Z2Z2Z1 Z2Z3Z4 R3 ) R4Ǔ, , d + Z2Z3Z4 ) Z1Z2Z4 ) Z1Z2Z3 ) Z2Z2Z4 ) Z2Z2Z1 Z1Z2Z3 , and Ve = Vp – Vn, the generalized Sallen-Key filter circuit is represented in gain-block form as shown in Figure 4. 2 SLOA024B (1) (2) (3) (4)
Generalized Circuit Analysis VI c Ve + + – d b a(f) VO Figure 4. Gain-Block Diagram of the Generalized Sallen-Key Filter From the gain-block diagram the transfer function can be solved easily by observing, Vo = a(f)Ve and Ve = cVi + dVo – bVo. Solving for the generalized transfer function from gain block analysis gives: Vo ȡ bǓȧȧ Vi + ǒc 1 ) Ȣ 1 1 aǒfǓb * ȣ ȧȧ d Ȥ b 2.2 Ideal Transfer Function Assuming a(f)b is very large over the frequency of operation, 1 transfer function from gain block analysis becomes: a(f)b [ 0, the ideal Vo ȣ ȡ bǓȧ Vi + ǒc 1 ȧ d 1 * Ȥ Ȣ b b + K, c + N2 D By letting 1 , where N1, N2, and D are the numerators and denominators shown above, the ideal equation can be rewritten as: , and d + N1 D K ȡ ȣ Vo Vi +ȧ ȧ . Plugging in the generalized impedance terms gives the D N1 * K@N2 Ȣ Ȥ N1 ideal transfer function with impedance terms: Vo Vi + Z1Z2 Z3Z4 ) Z1 Z3 ) K Z2 Z3 ) Z1ǒ1*KǓ Z4 ) 1 (5) (6) (7) Analysis of the Sallen-Key Architecture 3
Low-Pass Circuit 3 Low-Pass Circuit The standard frequency domain equation for a second order low-pass filter is: HLP + 2 K ) * ǒ f fcǓ jf Qfc ) 1 (8) Where fc is the corner frequency (note that fc is the breakpoint between the pass band and stop band, and is not necessarily the –3 dB point) and Q is the quality factor. When f<>fc, Equation (8) reduces to * Kǒfc f Ǔ , and signals are attenuated by the square of the frequency ratio. With attenuation at higher frequencies increasing by a power of 2, the formula describes a second order low-pass filter. Figure 5 shows the Sallen-Key circuit configured for low-pass: Z1 + R1, Z2 + R2, Z3 + 1 , sC1 Z4 + 1 sC2 , and K + 1 ) R4 R3 . R1 R2 VI C1 C2 + – R4 R3 VO Figure 5. Low-Pass Sallen-Key Circuit From Equation (7), the ideal low-pass Sallen-Key transfer function is: Vo Vi (Ip) + By letting s2(R1R2C1C2) ) s(R1C1 ) R2C1 ) R1C2(1 * K)) ) 1 K (9) 1 Ǹ fc + 2p R1R2C1C2 s + j2pf, equation (9) follows the same form as Equation (8). With some simplifications, these equations can be dealt with efficiently; the following paragraphs discuss commonly used simplification methods. R1C1 ) R2C1 ) R1C2(1 * K) , and Q + Ǹ R1R2C1C2 , 4 SLOA024B
分享到:
收藏