logo资料库

DRV8844 数据手册.pdf

第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
资料共18页,剩余部分请下载后查看
www.ti.com.cn ZHCSA48A –JULY 2012 –REVISED OCTOBER 2012 1/2 H : DRV8844 (IC) DRV8844 1 2• • • • • 1/2 H (DC) – DC – – 24V 25°C MOSFET 2.5A ±30V 3.3V 10mA (LDO) IN/IN 8V 60V • • • • • • • DRV8844 1/2 H DC 1/2 H N MOSFET DRV8844 2.5A 1.75A (RMS) 24V 25°C (PCB) 1/2 H nFAULT DRV8844 PowerPAD™ 28 (HTSSOP) RoHS Sb/Br TA ORDERING INFORMATION(1) PACKAGE(2) –40°C to 85°C PowerPAD™ (HTSSOP) - PWP Reel of 2000 Tube of 50 ORDERABLE PART NUMBER DRV8844PWPR DRV8844PWP TOP-SIDE MARKING DRV8844 (1) For the most current packaging and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. 2PowerPAD is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2012, Texas Instruments Incorporated English Data Sheet: SLVSBA2
DRV8844 ZHCSA48A –JULY 2012 –REVISED OCTOBER 2012 www.ti.com.cn DEVICE INFORMATION Functional Block Diagram 2 Copyright © 2012, Texas Instruments Incorporated
www.ti.com.cn ZHCSA48A –JULY 2012 –REVISED OCTOBER 2012 NAME PIN I/O(1) DESCRIPTION EXTERNAL COMPONENTS OR CONNECTIONS POWER AND GROUND Table 1. TERMINAL FUNCTIONS DRV8844 VNEG LGND VM V3P3OUT CP1 CP2 VCP CONTROL IN1 EN1 IN2 EN2 IN3 EN3 IN4 EN4 nRESET nSLEEP STATUS nFAULT OUTPUT OUT1 OUT2 OUT3 OUT4 NO CONNECT NC 6, 9, 14, 28, PPAD 19 4, 11 15 1 2 3 27 26 25 24 23 22 21 20 16 17 18 5 7 8 10 12, 13 - I - O IO IO IO I I I I I I I I I I Negative power supply (dual supplies) or ground (single supply) Logic input reference ground Main power supply 3.3-V regulator output Charge pump flying capacitor Charge pump flying capacitor High-side gate drive voltage Channel 1 input Channel 1 enable Channel 2 input Channel 2 enable Channel 3 input Channel 3 enable Channel 4 input Channel 4 enable Reset input Sleep mode input OD Fault O O O O - Output 1 Output 2 Output 3 Output 4 No connect Connect to logic ground. This may be any voltage between VNEG and VM - 8 V. Connect to motor supply (8 V - 60 V). Both pins must be connected to same supply. Bypass to VNEG with a 10-µF (minimum) capacitor. Bypass to VNEG with a 0.47-μF 6.3-V ceramic capacitor. Can be used to supply VREF. Connect a 0.01-μF 100-V capacitor between CP1 and CP2. Connect a 0.1-μF 16-V ceramic capacitor to VM. Logic input controls state of OUT1. Internal pulldown. Logic high enables OUT1. Internal pulldown. Logic input controls state of OUT2. Internal pulldown. Logic high enables OUT2. Internal pulldown. Logic input controls state of OUT3. Internal pulldown. Logic high enables OUT3. Internal pulldown. Logic input controls state of OUT4. Internal pulldown. Logic high enables OUT4. Internal pulldown. Active-low reset input initializes internal logic and disables the H-bridge outputs. Internal pulldown. Logic high to enable device, logic low to enter low-power sleep mode. Internal pulldown. Logic low when in fault condition (overtemp, overcurrent, UVLO). Open-drain output. Connect to loads. No connection to these pins (1) Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output Copyright © 2012, Texas Instruments Incorporated 3
DRV8844 ZHCSA48A –JULY 2012 –REVISED OCTOBER 2012 www.ti.com.cn CP1 CP2 VCP VM OUT1 VNEG OUT2 OUT3 VNEG OUT4 VM NC NC VNEG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 GND (PPAD) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 VNEG IN1 EN1 IN2 EN2 IN3 EN3 IN4 EN4 LGND nFAULT nSLEEP nRESET V3P3OUT ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range, all voltages relative to VNEG terminal (unless otherwise noted) (1) (2) VM Power supply voltage range Logic ground voltage range (LGND) Digital pin voltage range Peak motor drive output current, t < 1 μS Continuous motor drive output current (3) Operating virtual junction temperature range Storage temperature range TJ Tstg (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings –40 to 150 –60 to 150 only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability. (2) All voltage values are with respect to VNEG terminal, unless otherwise specified. (3) Power dissipation and thermal limits must be observed. VALUE –0.3 to 65 –0.5 to VM - 8 LGND - 0.5 to LGND + 7 Internally limited 2.5 UNIT V V V A A °C °C THERMAL INFORMATION THERMAL METRIC(1) θJA θJCtop θJB ψJT ψJB θJCbot Junction-to-ambient thermal resistance(2) Junction-to-case (top) thermal resistance (3) Junction-to-board thermal resistance (4) Junction-to-top characterization parameter(5) Junction-to-board characterization parameter(6) Junction-to-case (bottom) thermal resistance(7) DRV8844 PWP 16 PINS 31.6 15.9 5.6 0.2 5.5 1.4 UNITS °C/W (1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。 (2) 在 JESD51-2a 描述的环境中,按照 JESD51-7 的指定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然 对流条件下的结至环 (3) 通过在封装顶部模拟一个冷板测试来获得结至芯片外壳(顶部)的热阻。 不存在特定的 JEDEC 标准测试,但 可在 ANSI SEMI 标准 G30- (4) 按照 JESD51-8 中的说明,通过 在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结板热阻。 (5) 结至顶部特征参数, ψJT,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该参 (6) 结至电路板特征参数, ψJB,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该 (7) 通过在外露(电源)焊盘上进行冷板测试仿真来获得 结至芯片外壳(底部)热阻。 不存在特定的 JEDEC 标准 测试,但可在 ANSI SEMI 境热阻。 88 中能找到内容接近的说明。 数以便获得 θJA。 参数以便获得 θJA 。 标准 G30-88 中能找到内容接近的说明。 空白 4 Copyright © 2012, Texas Instruments Incorporated
www.ti.com.cn RECOMMENDED OPERATING CONDITIONS over operating free-air temperature range, all voltages relative to VNEG terminal (unless otherwise noted) ZHCSA48A –JULY 2012 –REVISED OCTOBER 2012 DRV8844 Motor power supply voltage range(1) V3P3OUT load current VM IV3P3 (1) All VM pins must be connected to the same supply voltage. ELECTRICAL CHARACTERISTICS TA = 25°C, over operating free-air temperature range, all voltages relative to VNEG terminal (unless otherwise noted) PARAMETER TEST CONDITIONS MIN NOM MIN 8 0 MAX 60 10 UNIT V mA V3P3OUT voltage VM operating supply current VM sleep mode supply current VM undervoltage lockout voltage POWER SUPPLIES IVM IVMQ VUVLO V3P3OUT REGULATOR V3P3 LOGIC-LEVEL INPUTS VIL VIH VHYS IIL IIH RPD nFAULT OUTPUT (OPEN-DRAIN OUTPUT) VOL IOH H-BRIDGE FETS Input low voltage Input high voltage Input hysteresis Input low current Input high current Internal pulldown resistance Output low voltage Output high leakage current RDS(ON) HS FET on resistance LS FET on resistance Off-state leakage current IOFF PROTECTION CIRCUITS IOCP tDEAD tOCP TTSD Overcurrent protection trip level Output dead time Overcurrent protection deglitch time Thermal shutdown temperature VM = 24 V, fPWM < 50 kHz VM = 24 V VM rising IOUT = 0 to 1 mA 3.18 TYP 1 500 6.3 3.3 MAX UNIT 5 800 8 mA μA V 3.52 V VIN = LGND VIN = LGND + 3.3 V IO = 5 mA VO = LGND + 3.3 V VM = 24 V, IO = 1 A, TJ = 25°C VM = 24 V, IO = 1 A, TJ = 85°C VM = 24 V, IO = 1 A, TJ = 25°C VM = 24 V, IO = 1 A, TJ = 85°C Die temperature LGND + 0.6 LGND + 2.2 50 –5 100 0.24 0.29 0.24 0.29 90 5 160 –2 3 150 LGND + 0.7 LGND + 5.25 600 5 100 LGND + 0.5 1 0.39 0.39 2 180 V V mV μA μA kΩ V μA Ω μA A ns µs °C Copyright © 2012, Texas Instruments Incorporated 5
DRV8844 ZHCSA48A –JULY 2012 –REVISED OCTOBER 2012 SWITCHING CHARACTERISTICS(1) over operating free-air temperature range (unless otherwise noted) NUMBER PARAMETER TEST CONDITIONS 1 2 3 4 5 6 7 8 t1 t2 t3 t4 t5 t6 tR tF Delay time, ENx high to OUTx high, INx = 1 Delay time, ENx low to OUTx low, INx = 1 Delay time, ENx high to OUTx low, INx = 0 Delay time, ENx low to OUTx high, INx = 0 Delay time, INx high to OUTx high Delay time, INx low to OUTx low Output rise time, resistive load to VNEG Output fall time, resistive load to VNEG (1) Not production tested – specified by design www.ti.com.cn MAX 330 475 300 400 500 475 150 150 UNIT ns ns ns ns ns ns ns ns MIN 130 275 100 200 300 275 30 30 ENx OUTx INx OUTx 50% 50% 1 50% 2 50% ENx OUTx 50% 50% 3 50% 4 50% INx =1, resistiveloadtoGND INx =0, resistiveloadtoVM 50% 50% 80% 80% 5 50% 6 50% ENx =1 resistiveloadtoGND OUTx 20% 7 20% 8 Figure 1. DRV8844 Switching Characteristics 6 Copyright © 2012, Texas Instruments Incorporated
www.ti.com.cn ZHCSA48A –JULY 2012 –REVISED OCTOBER 2012 FUNCTIONAL DESCRIPTION Output Stage The DRV8844 contains four 1/2-H-bridge drivers using N-channel MOSFETs. A block diagram of the output circuitry is shown in Figure 2. DRV8844 VM VM VM OUT 1 OUT2 OUT 3 OUT4 IN1 EN1 IN2 EN2 IN3 EN3 IN4 EN4 Logic Pre- drive OCP Pre- drive OCP Pre- drive OCP Pre- drive OCP Figure 2. Motor Control Circuitry The output pins are driven between VM and VNEG. VNEG is normaly ground for single supply applications, and a negative voltage for dual supply applications. Note that there are multiple VM motor power supply pins. All VM pins must be connected together to the motor supply voltage. Logic Inputs The logic inputs and nFAULT output are referenced to the LGND pin. This pin would be connected to the logic ground of the source of the logic signals (e.g., microcontroller). This allows LGND to be at a different voltage than VNEG; for example, you could drive a load by with bipolar power supplies by driving VM with +24 V and VNEG with -24 V, and connect LGND to 0 V (ground). Bridge Control The INx input pins directly control the state (high or low) of the OUTx outputs; the ENx input pins enable or disable the OUTx driver. Table 2 shows the logic. Copyright © 2012, Texas Instruments Incorporated 7
DRV8844 ZHCSA48A –JULY 2012 –REVISED OCTOBER 2012 www.ti.com.cn Table 2. H-Bridge Logic ENx 0 1 1 OUTx Z L H INx X 0 1 The inputs can also be used for PWM control of, for example, the speed of a DC motor. When controlling a winding with PWM, when the drive current is interrupted, the inductive nature of the motor requires that the current must continue to flow. This is called recirculation current. To handle this recirculation current, the H- bridge can operate in two different states, fast decay or slow decay. In fast decay mode, the H-bridge is disabled and recirculation current flows through the body diodes; in slow decay, the motor winding is shorted. To PWM using fast decay, the PWM signal applied to the INx pin. Table 3 is an example of driving a DC motor using OUT1 and OUT2 as an H-bridge: is applied to the ENx pin; to use slow decay, the PWM signal is Table 3. PWM Function IN1 PWM 0 1 0 EN1 1 1 PWM PWM IN2 0 PWM 0 1 EN2 1 1 PWM PWM FUNCTION Forward PWM, slow decay Reverse PWM, slow decay Forward PWM, fast decay Reverse PWM, fast decay The drawings below show the current paths in different drive and decay modes: VM 1 2 3 OUT1 1 2 3 Forwarddrive Fastdecay Slowdecay OUT2 OUT1 VM 1 2 3 1 2 3 Reversedrive Fastdecay Slowdecay OUT2 FORWARD Figure 3. Current Paths REVERSE Charge Pump Since the output stages use N-channel FETs, a gate drive voltage higher than the VM power supply is needed to fully enhance the high-side FETs. The DRV8844 integrates a charge pump circuit that generates a voltage above the VM supply for this purpose. The charge pump requires two external capacitors for operation. Refer to the block diagram and pin descriptions for details on these capacitors (value, connection, etc.). The charge pump is shut down when SLEEPn is active low. 8 Copyright © 2012, Texas Instruments Incorporated
分享到:
收藏