logo资料库

自动驾驶轨迹跟踪控制Automatic Steering Methods for Path Tracking.pdf

第1页 / 共78页
第2页 / 共78页
第3页 / 共78页
第4页 / 共78页
第5页 / 共78页
第6页 / 共78页
第7页 / 共78页
第8页 / 共78页
资料共78页,剩余部分请下载后查看
Automatic Steering Methods for Autonomous Automobile Path Tracking Jarrod M. Snider CMU-RI-TR-09-08 February 2009 Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania c Carnegie Mellon University
Abstract This research derives, implements, tunes and compares selected path tracking methods for controlling a car-like robot along a predetermined path. The scope includes commonly used methods found in practice as well as some theoretical methods found in various literature from other areas of research. This work reviews literature and identifies important path tracking models and control algorithms from the vast background and resources. This paper augments the literature with a comprehensive collection of important path tracking ideas, a guide to their implementations and, most importantly, an independent and realistic comparison of the performance of these various approaches. This document does not catalog all of the work in vehicle modeling and control; only a selection that is perceived to be important ideas when considering practical system identification, ease of implementation/tuning and computational efficiency. There are several other methods that meet this criteria, however they are deemed similar to one or more of the approaches presented and are not included. The performance results, analysis and comparison of tracking methods ultimately reveal that none of the approaches work well in all applications and that they have some complementary characteristics. These complementary characteristics lead to an idea that a combination of methods may be useful for more general applications. Additionally, applications for which the methods in this paper do not provide adequate solutions are identified. II
Acknowledgements This work would not have been possible without the support, motivation and encouragement of Dr. Chris Urmson, under whose supervision I chose this area of research. I would like to acknowledge the advice and guidance of Dr. William ”Red” Whittaker, whom never ceases to amaze and inspire me. Special thanks go to Tugrul Galatali, whose knowledge and assistance was instrumental in the success of this research and paper. I acknowledge Mechanical Simulation for their generous support and discount of CarSim. Without CarSim, quality analysis and comparison of tracking methods may not have been possible. I would also like to thank the members of my family, especially my wife, Amy, and my son Xavier for supporting and encouraging me in everything I do. III
Contents 1 Introduction 1.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Lane Change Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Figure Eight Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3 Road Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Geometric Path Tracking 2.1 Geometric Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Pure Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Tuning the Pure Pursuit Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Stanley Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Tuning the Stanley Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Path Tracking Using a Kinematic Model 3.1 Kinematic Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Path Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Kinematic Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Chained Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Smooth Time-Varying Feedback Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Input Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 Tuning the Kinematic Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Path Tracking Control Using a Dynamic Model 4.1 Dynamic Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Linearized Dynamic Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Path Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 Model Parameter Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Tuning the Optimal Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Optimal Control with Feed Forward Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 Tuning the Optimal Controller with Feed Forward Term . . . . . . . . . . . . . . . . . . . . IV 1 3 3 4 5 8 8 9 10 14 15 18 18 20 21 22 23 24 25 28 29 30 31 33 36 38 41 44
4.4 Optimal Preview Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Tuning the Optimal Preview Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Performance Comparison 5.1 Tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Conclusions and Future Work 46 49 61 61 65 V
List of Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Sandstorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stanley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Screen shot from a CarSim animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lane Change Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure Eight Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Road Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Velocity profiles used on the Road Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geometric Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pure Pursuit geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pure Pursuit at multiple speeds and various gains on the lane change course . . . . . . . . . . . . . . Pure Pursuit at multiple speeds and various gains on the figure eight course . . . . . . . . . . . . . . Pure Pursuit at multiple velocity profiles and various gains on the road course . . . . . . . . . . . . . Stanley method geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stanley controller at multiple speeds and various gains on the lane change course . . . . . . . . . . . Stanley controller at multiple speeds and various gains on the figure eight course . . . . . . . . . . . Stanley controller at multiple velocity profiles and various gains on the road course . . . . . . . . . . 18 Kinematic bicycle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Kinematic bicycle model in path coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Kinematic controller at multiple speeds and various gains on the lane change course . . . . . . . . . . 21 Kinematic controller at multiple speeds and various gains on the figure eight course . . . . . . . . . . 22 Kinematic controller at multiple velocity profiles and various gains on the road course . . . . . . . . . 23 Dynamic Bicycle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Dynamic Bicycle Model in path coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 26 27 28 29 Example of lateral force tire data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear approximation of the lateral force tire data . . . . . . . . . . . . . . . . . . . . . . . . . . . . LQR controller at multiple speeds and various gains on the lane change course . . . . . . . . . . . . . LQR controller at multiple speeds and various gains on the figure eight course . . . . . . . . . . . . . LQR at multiple velocity profiles and various gains on the road course . . . . . . . . . . . . . . . . . 1 1 1 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 21 26 27 28 29 31 34 34 39 40 41 VI
30 31 32 LQR controller with feed forward term at multiple speeds and various gains on the lane change course LQR controller with feed forward term at multiple speeds and various gains on the figure eight course 44 45 LQR controller with feed forward term at multiple velocity profiles and various gains on the road course 46 33 Optimal preview controller with 0.5s preview at multiple speeds and various gains on the lane change course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 34 Optimal preview controller with 1.0s preview at multiple speeds and various gains on the lane change course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 35 Optimal preview controller with 1.5s preview at multiple speeds and various gains on the lane change course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 36 Optimal preview controller with 2.0s preview at multiple speeds and various gains on the lane change course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 37 Optimal preview controller with 0.5s preview at multiple speeds and various gains on the figure eight course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 38 Optimal preview controller with 1.0s preview at multiple speeds and various gains on the figure eight course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 39 Optimal preview controller with 1.5s preview at multiple speeds and various gains on the figure eight course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 40 Optimal preview controller with 2.0s preview at multiple speeds and various gains on the figure eight course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Optimal preview controller with 0.5s preview at multiple speeds and various gains on the road course 42 Optimal preview controller with 1.0s preview at multiple speeds and various gains on the road course 43 Optimal preview controller with 1.5s preview at multiple speeds and various gains on the road course 44 Optimal preview controller with 2.0s preview at multiple speeds and various gains on the road course 45 Comparison of the tuned controllers on the lane change course . . . . . . . . . . . . . . . . . . . . . 46 Comparison of the tuned controllers on the figure eight course . . . . . . . . . . . . . . . . . . . . . 47 Comparison of the tuned controllers on the road course . . . . . . . . . . . . . . . . . . . . . . . . . 48 Performance comparison table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 57 58 59 60 61 62 63 64 VII
1 Introduction A significant portion of Robotics research involves developing autonomous car-like robots. This research is often at the forefront of innovation and technology in many areas. However, it is often common practice to use relatively simple and sometimes naive control strategies and/or system models for vehicle control, even on some well known and successful autonomous vehicle projects [18, 17, 16, 4]. Figure 1: Sandstorm Figure 2: Stanley Figure 3: Boss Figure 1 is Sandstorm, the autonomous vehicle that placed second in the DARPA Grand Challenge using a very simple steering control law based on a geometric vehicle model. Figure 2 is Stanley, the autonomous vehicle that won the DARPA Grand Challenge using an intuitive steering control law based on a simple kinematic vehicle model. Figure 3 is Boss, the autonomous vehicle that won the DARPA Urban Challenge. Boss uses a much more sophisticated model predictive control strategy to perform vehicle control. However, a very simple kinematic model of the vehicle, a time delay and rate limits on steering is all that is included in the optimization of the steering controls. This does 1
分享到:
收藏