logo资料库

应用电磁学基础Fundamentals of Applied Electromagnetics(6th,2010).pdf

第1页 / 共513页
第2页 / 共513页
第3页 / 共513页
第4页 / 共513页
第5页 / 共513页
第6页 / 共513页
第7页 / 共513页
第8页 / 共513页
资料共513页,剩余部分请下载后查看
Page 1
Images
Image 1
Page 2
Images
Image 1
Tables
Table 1
Table 2
Page 3
Images
Image 1
Image 2
Page 4
Titles
A x (B x C) = B(A . C) - C(A x B)
A . (B x C) = B . (C x A) = C . (A x B)
SOME USEFUL VECTOR IDENTITIES
A . B = A B cos e A B
V(U + V) = VU + VV
VevV) = UVV + VVU
v . (A + B) = V . A + V . B
V . evA) = UV· A + A· VU
V x (U A) = UV x A + VU x A
V x (A + B) = V x A + V x B
V· (A x B) = B· (V x A) - A . (V x B)
V . (V x A) = 0
VxVV=O
V x V x A = V(V . A) - V2A
/ (V . A) dv = fA. ds
/ (V x A) . ds = fA. dl
s c
Images
Image 1
Image 2
Page 5
Titles
FUNDAMENTALS OF
APPLIED
ELECTROMAGNETICS
6/e
Fawwaz T. Ulaby
Eric Michielssen
Urn bertoRavaioli
PEARSON
Images
Image 1
Image 2
Page 6
Titles
Preface to 6/e
Images
Image 1
Image 2
Image 3
Page 7
Titles
Excerpts From the Preface to the Fifth
CONTENT
Suggested Syllabi
Tables
Table 1
Page 8
Page 9
Titles
List of Technology Briefs
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 10
Titles
Contents
Images
Image 1
Image 2
Tables
Table 1
Page 11
Tables
Table 1
Page 12
Tables
Table 1
Page 13
Tables
Table 1
Page 14
Images
Image 1
Image 2
Page 15
Titles
Introduction: Waves and Phasors
Objectives
R
E
T
p
1
A
H
c
Chapter Contents
Images
Image 1
Image 2
Page 16
Titles
16
Overview
Images
Image 1
Page 17
Titles
1-1 Historical Timeline
1-1.1 EM in the Classical Era
1-1.2 EM in the Modem Era
Images
Image 1
Page 18
Titles
18
CHAPTER I INTRODUCTION: \V/\vES Al\D PHASORS
Radar
Electromagnetic sensors
Global Positioning System (GPS)
Cell
);i_:::--.
~_::"'rl-=.-'
~---~-----~
Telecommun ication
Ultrasound transducer
Ablation catheter
Liver
Ultrasound
Microwave ablation for
Images
Image 1
Image 2
Image 3
Page 19
Titles
19
1-2 Dimensions, Units, and Notation
E=xE,
Images
Image 1
Image 2
Tables
Table 1
Table 2
Page 20
Titles
Chronology 1-1: TIMELINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA
1752
1733
1745
1671
Electromagnetics in the Classical Era
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 21
Titles
21
Gauss' Law for Electricity ;
Electromagnetics in the Classical Era
Chronology ir: TIME LINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA (contrnuedl
1-2 DIMENSIONS, UNITS, AND NOTATION
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 22
Titles
22
CHAPTER I INTRODUCTION: WAVES AND PHASORS
Telecommunications
ON~ ~~~N~"'~:~G~~~. ~A.
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 23
Titles
\-2 DIMENSIONS. UNITS, AND NOTATION
Telecommunications
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 24
Titles
24
CHAPTER 1 INTRODUCTION: WAVES AND PHASORS
Chronology 1-3: TIMELINE FOR COMPUTER TECHNOLOGY
Computer Technology
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 25
Titles
25
~~:'~~'~~~rE~ ~~!
Computer Technology
1-2 DIMENSIONS. UNITS. AND NOTATION
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 26
Titles
1- 3 The Nature of Electromagnetism
The force of gravitation acts at a distance.
1-3.1 The Gravitational Force: A Useful
" t I
\ t I -~
"" \!; "
----~e~ --
, ,
It'
Images
Image 1
Image 2
Image 3
Page 27
Titles
(1.7)
1-3.2 Electric Fields
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 28
Titles
+
" t /1 ~
", \t/ /x
'8/
I ~ \
, "­
Images
Image 1
Image 2
Page 29
Titles
1-3.3 Magnetic Fields
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 30
Titles
(Him).
1-3.4 Static and Dynamic Fields
JiiOiO
Images
Image 1
Image 2
Image 3
Image 4
Page 31
Images
Image 1
Page 32
Titles
o
1-4 Traveling Waves
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 33
Titles
I
4>(x,t)= T-T+4>o
\
1-4.1 Sinusoidal Waves in a Lossless Medium
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 34
Titles
IP
y(x. t) = Yo = A cos T - T '
y(x, T12)
y(x, T14)
-A
T A
y(x, 0)
(1.20)
y(x.t) = A cos T - T
y(x, 0)
Images
Image 1
Image 2
Image 3
Image 4
Page 35
Titles
co
----=0
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 36
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 37
Titles
Sinusoidal Waves in a Lossy Medium
Images
Image 1
Image 2
Page 38
Titles
f
(21T: 21T: )
---~
--
---
y(x)
Example 1-1: Sound Wave in Water
Images
Image 1
Image 2
Image 3
Page 39
Titles
Example 1-2: Power Loss
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 40
Titles
a '-- , 'II
1-5 The Electromagnetic Spectrum
Images
Image 1
Image 2
Image 3
Image 4
Page 41
Titles
41
(1.35)
y = Jm(z).
x = 9'te(z).
1-6 Review of Complex Numbers
o
Images
Image 1
Image 2
Tables
Table 1
Table 2
Page 42
Titles
CHt\PTER I INTRODUCTION: WAVES AND PHASORS
RADIO SERVICES COLOR LEGEND
a I I'!I I H' a I I a~ I: I, ::~ :
I I I In I ~II I I,
FREQUENCY
, II I III 'I I! ! I II ~: I ill II l 1 __
, 'I
HF
MF
VLF
VHF
UNITED
-+2
UHF
••• ' • r I I I!' • 1 liD I • I '
• : ' 01 D "I, ~. II I i I " • n
' • • . 'I f'" I ' '~ : , t:I ,I I "
SHF
i . ~~! R I :fri II lui n ~ ~
, . W.h I n M , ,.0 U ! II III U t1J In
" ' ,,' ~: - D '
1 • ~. ~.I '. , ;
EHF
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 43
Titles
( 1.44)
(1.46)
( 1.48a)
( 1.47a)
( 1.48b)
( 1.47b)
ILl I
Izzi - -
Multiplication:
liZ! = tfZ"i*,. (1.43) I
43
Division: For Z2 I- 0,
~ ~
Xi +)'2'
Addition:
( 1.37)
(1.39)
(lAO)
(1.42)
x = [z] cos ()
[z] =tj x2 + y2
y = IzlsmB,
e = tan-I (y/x).
y
Jm(z)
x = Izlcose,
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 44
Titles
Technology Brief 1: LED Lighting
Light Sources
Images
Image 1
Image 2
Image 3
Page 45
Titles
, argon, and xenon) at very low pressure, the electrons collide with the mercury atoms, causing them to excite
v;-
·E 75
'"
Images
Image 1
Image 2
Image 3
Page 46
Titles
+
v
Page 47
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 48
Titles
Solution:
Jm
0.54 )
v = 3 - j4,
-1 = ejrr = e - jit = 1 L!.!!!r'. ,
v'2
Example 1~3: Working with Complex Numbers
C a) IV I = \i"V"V*
Useful Relations:
Images
Image 1
Image 2
Image 3
Page 49
Titles
1-7 Review of Phasors
Images
Image 1
Image 2
Image 3
Image 4
Page 50
Titles
R
c
- = - IJtc(leiUJT) =IRc -(leilO/)
1-7.1 Solution Procedure
=IReC~ ejW). (1.63)
Jm{[(R+ j~c)T-v,]ej(ot}=o.
= lJte [V,ejw/ J, ( 1.59)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 51
Titles
0.70)
L = 0.2 mH
(V).
....!.... Aej (¢O-IT /2)
i R= 6 Q
--
Example 1-4: RL Circuit
i (t) = I)tc [i ejwt ]
\/1 + w2R2C2
VowC
+ cos(wt + 1>0 - 1>1).
\/1 + w2 R2C2
o 1+ jwRC
= Voej(
\/1 + w2 R2C2 eNI
~1 + w2R2C2
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 52
Titles
Answer: (a) I = 150/(R + jwL) = 0.3/-36.9° (A), (b)
(1.73)
(1.72)
(1.71 )
(V).
di
Vs (t) = 5 sin (4 x 104 t ~ 30°)
6 + j4 x 104 x 2 x 10-4
( 1.74)
=---
6 + j8
- -
Images
Image 1
Image 2
Page 53
Titles
The PV Cell
Technology Brief 2: Solar Cells
Images
Image 1
Image 2
Page 54
Titles
Modules, Arrays, and Systems
Images
Image 1
Image 2
Image 3
Page 55
Titles
11-
"ZX
---
l1li
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 56
Titles
Chapter 1 Relationships
B=.~
E=R q
CHAPTER HIGHLIGHTS
Images
Image 1
Image 2
Image 3
Page 57
Titles
GLOSSARY OF IMPORTANT TERMS
PROBLEMS
*
Images
Image 1
Page 58
Titles
'---~-x
X=o
Images
Image 1
Page 59
Titles
(V)
(a) 1/1.'
(b) z3
(d) Jm{z}
(e) Jm{z*}
Z) = 51-60° •
(a) zi = 2 + j3 and Z2 = I - j2
(b) Zl = 3 and Z2 = - j3
Z) = -3 + j2,
7.1 = 3 - j2,
(e) Z5 = r'
Images
Image 1
Image 2
Page 60
Titles
L
i
--
Images
Image 1
Image 2
Image 3
Image 4
Page 61
Titles
Transmission Lines
R
E
T
Objectives
p
2
A
H
c
Chapter Contents
Images
Image 1
Image 2
Page 62
Titles
B
+
t
l
Load circuit
1------1
B
Receiving-end
Transmission line
A'
+
t
l
2-1.1 The Role of Wavelength
Transmission line
Sending-end
Generator circuit
,----------1
2-1 General Considerations
Images
Image 1
Image 2
Image 3
Image 4
Page 63
Titles
- JUUl
(m/s).
- JVlJ'L
JUUl-
JUUl-
JUUl-
V,"A' = Vg(t) = Vo cos tot
Images
Image 1
Image 2
Page 64
Titles
M
TEM Transmission Lines
M
Higher-Order Transmission Lines
2-1.2 Propagation Modes
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 65
Titles
2-2 Lumped-Element Model
Images
Image 1
Image 2
Image 3
Image 4
Page 66
Titles
R' /),z L' /),z
C'/),z
--------/),z--------
--------/),z--------
--------/),z--------
--------/),z--------
• Two-wire line [Fig. 2-4(17)1:
Images
Image 1
Page 67
Titles
, n, (I I)
R =- -+-
Images
Image 1
Image 2
Tables
Table 1
Page 68
Titles
_J¥fIIC
I /1 (b)
(Him).
G'=O,
(F/m).
(S/m).
Images
Image 1
Image 2
Page 69
Titles
---------Ac-------.
dV(z) , , -
--- = (R + jwL) I(z),
ai(z, t) G' ( ) C ,au(z, t)
----az- = U z,t + at'
iV. t) - c' s» u(z + I1z. t)
- -
These are the telegrapher's equations ill phasor form.
di(z) , , -
--;;;- = (G + jWC ) V(z). (2. I 8b)
~-.~--------~--~+
, ili(7.t)
aU(z,t) R"( ) L,ai(z,t)
- = 'zt+ ---
az . , at'
1
0<[' t)
Node
+ -
- = R t{z. t) + L --- .
2-3 Transmission-Line Equations
Images
Image 1
Image 2
Image 3
Page 70
Titles
I--z
--- = (R + JwL )-- .
dz2 dz
--2- - (R' + jwL')(G' + jwC') V(z) = 0, (2.20)
dz
2-4 Wave Propagation on a Transmission
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 71
Titles
v.+ I v.+ I j¢+
11- IV.-I N-
y+ -v;
~ = Zo = __ 0_.
o 0
Images
Image 1
Image 2
Image 3
Page 72
Titles
c,=L
_ r;;;;u _ fL'
up = fA = ~ .
L' = Z5C'
Example 2-1: Air Line
Images
Image 1
Page 73
Titles
CT e = 5.797E7 [Slm]
Two-Wire Line
Module 2.1
output
Structure Data
D = 8.793
R < = 2.952465
Rangel L.:I ~~~~~~~~~i...:...J~ I
Rangel 1 ••.. ~--"- ••...•.•••••..•••••• -""' ••.•...• ~~~ .......•.......• ~ 1
[ Hz}
Input
I
A=0.1978 [m]
[Np/m]
Images
Image 1
Image 2
Page 74
Titles
2b
Coaxial Cable
Module 2.2
I· ~ 1
G {S/m]
I
Output
Structure Data
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 75
Titles
2-5 The Lossless Microstrip Line
up = --.
Fr
Images
Image 1
Image 2
Image 3
Image 4
Page 76
Titles
t = CO.~,67r·75
lip = --.
~
e r +l (sr-I)( IO)-Xr
Scff = -- + -- I + -
C' = J€ctI
[cr - 0.9 ]0.05
e, + 3
ZO = -- n + 1 + - .
J€ctI S .1'2
f3 = -ftclr .
Images
Image 1
Tables
Table 1
Page 77
Titles
z, (fr-I)( 0.12)
= /9 + 1 x 50 + (9 - I) (0.23 + 0.12)
2 ~ 9+1 9
8eP
Example 2-2: Microstrip Line
60n2
h e2p -2 '
+ -- In(q - I) + 0.29 - -
Images
Image 1
Image 2
Image 3
Image 4
Page 78
Titles
output
Rangel ,L..--""' •..•••••. ..........:.~ ......•••........•••........•••.........••.•.......••.• ~;",.,J,
Rangel •.•• 14--""'-= .••••.........••••• == ~ ~ 1
Input
Images
Image 1
Image 2
Page 79
Titles
I lIe
up= =---. -=-
Up ciAo
A = - = - - = - , (2.53)
f f.,fEr .,fEr
(2.49)
(lossless line),
(lossless line). (2.45)
(lossless line), (2.46)
A _ 2rr _ 2rr
- f3 - wJL'C' .
lip = 73 = JL'C"
1
up = -- (m/s),
~
y = ex + jf3 = jwJ L'C I •
a=O
fJ = wJuc I
2-6 The Lossless Transmission Line:
General Considerations
Images
Image 1
Image 2
Image 3
Page 80
Titles
z=O
d=O
I
d=!
d~r---------------~
2-6.1 Voltage Reflection Coefficient
(2.55)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 81
Titles
81
t: v-
lip = c] Fr Zo = (1201 Fr)
ZL
= ZL + 1 (dimensionless), (2.59)
r = Vo- = ZL - Zo
ZL/Zo-l
=
V- = (ZL - zo) V+.
o ZL + Zo 0
Images
Image 1
Image 2
Image 3
Page 82
Titles
=
=
A'
Images
Image 1
Image 2
Image 3
Image 4
Page 83
Titles
83
r -I r + I
~ [2 ] 1/2
Reflection Coefficient r = WlejOr
nzo
..:::.....:::0 ) = we
. [(Vo+)*CeitJz + Ifie-j&ee-j/lZ)]}'/2
2-6.2 Standing Waves
Images
Image 1
Image 2
Image 3
Page 84
Titles
o
"4
2
IVcd)1
d------------------------~IVol
o
I A/2 I IV(d)1
4 2 "4
0.2
14 '2 '"4
Images
Image 1
Image 2
Image 3
Tables
Table 1
Table 2
Page 85
Titles
(2.72)
(dimensionless),
d . _ { dmax + ')./4, if dmax < ')./4,
s=~= l+lfI
IVlrnin 1 - Ifl
{ n = 1,2, .
n = 0,1, 2, .
d _ Br + 2mr _ OrA nA
max - 2{3 - 4;71" + 2 '
if Or < 0,
Images
Image 1
Image 2
Page 86
Titles
Options: Set Input I Output
Transmission Une Data 1
output
(; Impedance r Admillance
I Update II
Transmission Line Simulator
Length units: a (i. J
Low Loss Approximation
_ul.u
,.
',~::~1r\ /\~'
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Table 2
Page 87
Titles
87
Zo=50Q,
A = 2 x 0.3 = 0.6 m,
5-1
= 2 x - x 0.12 - tt
= -0.2n (rad)
2n 2n IOn
13-----­
(2 + j 1) - I
=
s=~
Example 2-6: Measuring ZJ>
Example 2-5: Standing-Wave Ratio
Images
Image 1
Image 2
Page 88
Titles
[I + r,]
I-r,
[I + r]
ZL=ZO --
I-r
2- 7 Wave Impedance of the Lossless Line
Images
Image 1
Page 89
Titles
Load
Z=O
Zo
Transmission line
1--------
z =-1
*
Generator
Example 2-7: Complete Solution for v(z, t)
In 0 RI' 'RI
l+iZLtanPI' (2.79)
z, + z.,
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Tables
Table 1
Page 90
Titles
I
+ (VgZin) ( 1 )
Vo = z, + z., e1fJi + re-jfJi
ZL - Zo
r=~-­
z., = Zo ( 1 + ri)
I-ri
v(d, t) = 9ie[V(d) eiwt]
Images
Image 1
Page 91
Titles
Wave and
Module 2.5
Images
Image 1
Image 2
Page 92
Titles
Technology Brief 3: Microwave Ovens
Microwave Absorption
II~::
Images
Image 1
Image 2
Tables
Table 1
Page 93
Titles
I
Oven Operation
Images
Image 1
Image 2
Image 3
Image 4
Page 94
Titles
(2.86)
, :
CHAPTER 2 TRANSMISSION LINES
jwLeq = j Zo tan (if,
Zf;: - z, ~:,~
d-4------------------------~1
o
V,dd) = Vo+lej/Jd - e-ifi"j = 2jVo+ sinf3d,
- VO+'f'< I 'fJd 2Vo+
/scCd) = ~[eJ'" + e-} ] = -- cosf3d.
Zo Zo
. V,dd) .
Denoting Zr.~ as the input impedance of a short-circuited
2-8.1 Short-Circuited Line
zst _V')C(I) -' Z· ta .f31 (2,.84.)
ill -lsc(l) - Joan· ,.
2-8 Special Cases of the Lossless Line
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 95
Titles
zli - = 7< ] ~~~~;t
*
sc ~z __ l_
1 -I (WLcq)
1
Images
Image 1
Page 96
Titles
I
z~c_
l--+---~~---+----~----+
d--~--~r----#----~----~
d~+-------------------~
Z~ = -_-- = -JZocotfjI. (2.93)
\loc(d) = Vo+[ej,8d + e-j,8d] = lVo+ cosf3d,
- v+ ljV.+
Zo z,
2-8.3 Application of Short-Circuit! Open-Circuit
2-8.2 Open-Circuited Line
by d--+---~r----+----~----+
96
~
(2.95)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Image 11
Page 97
Titles
for I = )../4 + n)../2. (2.97)
Z2
o------OA'
1---).14---
Example 2-10: 1./4 Transformer
forI = n)../2,
Quarter- Wavelength Transformer
Lines of Length' = nA/2
Example 2-9: Measuring Zo and fJ
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 98
Titles
98
2-8.6 Matched Transmission Line: ZL = Zo
Images
Image 1
Tables
Table 1
Page 99
Titles
2-9.1 Instantaneous Power
\Y.+ I
Answer: I = 5.68 cm. (See -e-)
Review Question 2-11: What is a quarter-wave
2-9 Power Flow on a Lossless
Images
Image 1
Page 100
Titles
. I!. w !
1\1:+12
2-9.2 Time-Average Power
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 101
Titles
If') (27rt ) 1
T cos- T + tJd + ¢ dt = 2" .
o
Review Question 2-18: Verify that
2-10 The Smith Chart
1
1
IV.+I'
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 102
Titles
Open-circuit
fr = [I"] cos8r•
Short-circuit
2-10.1 Parametric Equations
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 103
Titles
( 1)2 (1)2
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 104
Titles
Images
Image 1
Image 2
Page 105
Titles
Wave Impedance
=.9ZL~2-jl
I+r
Zed) 1+ r"
zed) = -- = -- ,
z, 1 - r"
Images
Image 1
Image 2
Page 106
Titles
2-10.3 SWR, Voltage Maxima and Minima
s = 1+ Ifl .
4. - I
Page 107
Images
Image 1
Image 2
Image 3
Page 108
Titles
, 'd'
Images
Image 1
Image 2
Image 3
Page 109
Titles
2-10.4 Impedance to Admittance Transformations
Y Zo
v=-=-=-.
I + r «: j;r I - r
z(d = ";./4) = - -- - YL
1 1- r
YL=-=--
ZL l+r
Y = G + jB
Z = R + jX
R
-X
B = ----,,------,,-
R2 + X2
G
g = - = GZo
B
h= - = BZo
1 R - jX
Z R + jX R2 + X2
Y G B
v= - = -+j- =g+jb
Images
Image 1
Page 110
Titles
110
Images
Image 1
Image 2
Page 111
Titles
THE SMITH CHART
Location
.,..
O.135A
III
Location
1-3.3).-1
"';1 i :9'L ~ 05 + jl
, 'd,
Images
Image 1
Image 2
Page 112
Titles
Zin = 0.28 - jOo4O,
ZL = 0.6 - jO.8.
Page 113
Images
Image 1
Image 2
Page 114
Titles
114
ry
z, = SO.O In]
2-11
Impedance Matching
Images
Image 1
Page 115
Titles
Yin = (Cd + jBd) + js,
2-11.1 Lumped-Element Matching
M'
M
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 116
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Image 11
Image 12
Image 13
Page 117
Titles
( I - IfleFi') (I + Ifle-jR')
Yd= 1+lflejO' 1+lfle-jW
h'l = -----,,--..,-----
Images
Image 1
Image 2
Image 3
Page 118
Titles
Yo
YdJ
I
Yo
A
1
Images
Image 1
Image 2
Image 3
Page 119
Titles
o.usz
1 + jO = )'s + 1 + j 1.58,
Ys = - jl.58.
)'d = 1 - j1.58,
Images
Image 1
Image 2
Page 120
Titles
120
2-11.2 Single-Stub Matching
Images
Image 1
Image 2
Page 121
Titles
and Y'l = } b.'I = - j 1.58,
(2) d: = 0.20n.
M
MI---d---
Yo
Example 2-14: Single-Stub Matching
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 122
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 123
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 124
Titles
124
2-12 Transients on Transmission Lines
Images
Image 1
Image 2
Image 3
Page 125
Titles
z=/
z=O
V(t)
VI (t) = Vo u( t)
Voi---------------
~_ Transmission line
Vgi ~ Zo ]Rt
1--------1--
Vet)
r
U(X)={:)
vor-- ....•
2-12.1 Transient Response
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 126
Titles
(1/2::: Z S I). (2. 154b)
II = -rd~,
(0 s z < 1/2),
I) = ----"-
I 2
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 127
Titles
2-12.2 Bounce Diagrams
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 128
Titles
3T
T
3114
I
r+-r,
1(1/4,4T)
T
3T
3114
V
114
r=[L
V(l14,4T)
128
(1 + r L + r, r L)Vt \
V(l14, t)
vt
T
T
7T 2T 9T
4 4
3T
15T 4T 17T
4 4
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 129
Titles
0.54 V
rL = = -----,- = 0.5.
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 130
Titles
V]- = frVt = -3 Y,
Fr J2.f
°
V(O, t)
-3
Ri: - Zo
I I I
-=-+-
Ru Rr Zo'
Images
Image 1
Image 2
Image 3
Page 131
Titles
Microwave Ablation
Technology Brief 4: EM Cancer Zappers
Images
Image 1
Image 2
Image 3
Page 132
Titles
High-Power Nanosecond Pulses
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 133
Titles
133
~~
VI = --"---
V 00 = --"---
Rg-ZO
RL -ZO
(Np/m)
en)
=
Chapter 2 Relationships
G' a
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 134
Titles
ru
s=--
Images
Image 1
Image 2
Image 3
Page 135
Titles
GLOSSARY OF IMPORTANT TERMS
135
'----.....::..-0+
t
!
PROBLEMS
*
Images
Image 1
Image 2
Page 136
Titles
R'C' = i/c'
!L'
Images
Image 1
Image 2
Page 137
Titles
Zo = 50 0
C=')
R=6000
L=0.02 mH
of ZL.
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 138
Titles
R
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 139
Titles
139
(a) ZL = (50 - j50) Q
* -
- -
I --*
Pin = 291cl ViIi ).
Zo= 50 Q
Images
Image 1
Image 2
Page 140
Titles
son
---AI2---
A
B
son I-AI2-1
P~v-I-Pav
I
z, = 100 n
ZL = (50 + jlOO) n
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 141
Titles
III = 3..1/81 12 = 5),/8
C B IA
(a) Zt = 3Zo•
(0 r = j.
Images
Image 1
Image 2
Page 142
Titles
./)
1-0.3A-I/
30n
---0.3/. ---
*
*
1 = '!
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 143
Titles
12 V ----r----.
o
o
Images
Image 1
Page 144
Titles
Vector Analysis
R
E
T
Objectives
p
3
A
H
c
Chapter Contents
Images
Image 1
Image 2
Page 145
Titles
145
Overview
z
;- ••.. ---+-~y
A = alAI = aA.
, A A
a=-=-.
IAI A
3-1 Basic Laws of Vector Algebra
Images
Image 1
Image 2
Image 3
Image 4
Page 146
Titles
146
C =A+B = B+A.
C=A+B
=xCr+YCy+zCz. 0.7)
D=A-B
3-1.2 Vector Addition and Subtraction
A = xA, +yAy +zA".
_ A xAx + yA, +zA/
a= - = .
3-1.1 Equality of Two Vectors
A = aA = xA, + yAy + zA/.
Images
Image 1
Image 2
Image 3
Image 4
Page 147
Titles
3-1.3 Position and Distance Vectors
3-1.4 Vector Multiplication
~
B = kA = akA = x(kAx) + y(kA,) + z(kA,J
B
------------'"
z
Images
Image 1
Image 2
Image 3
Image 4
Page 148
Titles
14X
A
A = IA I = yt A . A .
The dot product obeys both the commutative and distributive
(3.18)
i . Y = y . i = z . i = O.
The cross product is anticommutative and distributive.
A x B = -B x A
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 149
Titles
- - - - _I'
.-#---'---t-----,+-I~y
..
A x A = O.
y x z=x e :
A . Y = IAIIYI cos {3 = A cos {3,
Example 3·1: Vectors and Angles
A = x2 + y3 + Z3.
A = IAI = J22 + 32 + 32 = m ,
a= ~ = (x2+Y3+Z3)/m.
--+
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Page 150
Titles
~--------y
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 151
Titles
3-2.1 Cartesian Coordinates
Review Question 3-4: If A x B = 0, what is eAB?
Review Question 3-3: If A· B = 0, what is eAB?
3-2 Orthogonal Coordinate Systems
Example 3-2: Vector Triple Product
Images
Image 1
Tables
Table 1
Page 152
Titles
152
Images
Image 1
Tables
Table 1
Page 153
Titles
dlz = d z,
dl, = dr.
3-2,2 Cylindrical Coordinates
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 154
Titles
dz
,
"
"
dsz = z r dr d1>
z
:--

ds~~ = ~ drdz
- -
ds", = ¢I dl; di, = ¢I dr dz (r-z plane),
ds, = Z dl, dl", = zr dr d¢ (r-¢ plane).
Images
Image 1
Image 2
Image 3
Image 4
Page 155
Titles
o
z
= rro - zh,
, A
a=-
IAI
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 156
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 157
Titles
(3,49)
ds", = ell dlR dIg =eIlR dR de
157
dV = dl « dla dt", = R2 sine dR de dd».
R sin a dq,
= R d R + 9 R de + ~ R sin e d ¢,
(3,47)
(3,46)
(3,48)
3-2.3 Spherical Coordinates
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 158
Titles
Technology Brief 5: Global Positioning System
Principle of Operation
Images
Image 1
Image 2
Image 3
Page 159
Titles
Differential GPS
Images
Image 1
Image 2
Page 160
Titles
dcp
o
3-3 Transformations between Coordinate
cpl2:r
S=R2 f sin e' dO f dcp
Example 3-6: Charge In a Sphere
Example 3-5: Surface Area In Spherical Coordinates
3-3.1 Cartesian to Cylindrical Transformations
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 161
Titles
r· x = x· xa + y. xh = a.
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 162
Titles
Example 3-7: Cartesian to Cylindrical Transformations
Images
Image 1
Tables
Table 1
Page 163
Titles
(R, e, ~):
R = ia + ib,
o
_ [\lX2 + V2]
(V)
3-3.2 Cartesian to Spherical Transformations
Images
Image 1
Image 2
Image 3
Page 164
Titles
164
3-3.3 Cylindrical to Spherical Transformations
3-3.4 Distance between Two Points
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 165
Titles
)---------------- ..• y
Answer: P = (4. 2rc/3. rc/3). (See 'B')
A = i(x + y) + Y(y - x) + zz
P2 = (x + dx, y + dy, z + dz)
3-4 Gradient of a Scalar Field
(3.73)
(3.71 )
(3.70)
dT = VT ·dl.
aT aT aT
dT = - dx + - d v + - d z.
ax ay' az
.aT .aT .aT
d.T = x- ·dl +y- ·dl +z- ·dl
ax av ilz
[aT 'IT aT]
= i-+y-(-+z- ·£11.
ax ay az
n ~a .0 ~a
ax oy Jz
d ~ aT .aT • aT
ax ay az
0.69)
dl = x dx + Y dy + z d z,
Images
Image 1
Image 2
Page 166
Titles
166
At (I, -\. 2).
dTI
4-12-2 -10
(3.78)
v
iJT iJT ilr er iJep iJT oz
3-4.1 Gradient Operator in Cylindrical
(3.76)
r-
T2 - TI = I V T . ell.
Example 3-9: Directional Derivative
ilx ay iJz .
= x2x + y2yz + z.'.2.
:-- = ? ? = cos ep ,
aep I.
-- = -- sin e.
ax r
st sr sin ep et
ax iJr r iJep
(3.80)
a,--- -
dT A A A A? (X2 + y3 - Z2)
ffi
et A 1 sr er
VT = r- +.-- +z-.
ilr r aep iJz
(3.81)
Images
Image 1
Image 2
Page 167
Titles
(_ a - I a - I a) (a)
iJ R R ae R sin e a¢ R
= nVo [-y6 + z4].
ax ily az
3-4.2 Properties of the Gradient Operator
Images
Image 1
Image 2
Image 3
Image 4
Page 168
Titles
T
Land
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 169
Titles
169
r y
r hi
.p x-v
GRADIENT OF A SCALAR FIELD
CD Module 3.2 Gradient
Select a scalar function f i», y, z), evaluate its gradient,
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 170
Titles
E
J-x
Idsl ds
+
3-5 Divergence of a Vector Field
Images
Image 1
Image 2
Image 3
Image 4
Page 171
Titles
.6. v ....• 0 ~V
iJE\"
ilEz
. az .
. aE, dE\" aEz
div E = - + -' + - .
ax ay ilL
1 ( ee, iJE, iJ£z)
E·ds= -+-+-
[ aEx]
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 172
Titles
(a) V·E=-+-' +-.-
ax ilv aL
Images
Image 1
Image 2
Tables
Table 1
Page 173
Titles
Technology Brief 6: X-Ray Computed Tomography
Principle of Operation
Images
Image 1
Image 2
Page 174
Titles
Image Reconstruction
Images
Image 1
Image 2
Page 175
Images
Image 1
Image 2
Image 3
Image 4
Page 176
Titles
176
3-6 Curl of a Vector Field
+ f xBo' X dx + f xBo' Y dy
Images
Image 1
Image 2
Image 3
Page 177
Titles
177
o
\l x B =curlB
= .lim _I [it Ii. B .dlJ (3.103)
(3.101)
Images
Image 1
Image 2
Tables
Table 1
Page 178
Titles
3-6.2 Stokes's Theorem
s c
" (0 B z iJ Br ) " (0 B, 0 B / )
VxB=x -.---.- +y -.---.-
iJy az az ax
Example 3-12: Verification of Stokes's Theorem
+z -----
ax av
3-6.1 Vector Identities Involving the Curl
V x (A + B) = V x A + V x B.
Images
Image 1
Image 2
Tables
Table 1
Page 179
Titles
= I ~ d z
= r5.
=«112.
179
.i. 12 sin e 1
f B . dl = I (z ~) . z d z
I(V x B) ·ds
r a¢ az az ar
= r~~ (COS¢) _ ~~ (COS¢)
= -r-~- + «11-.,- .
I ( a sn )
Images
Image 1
Page 180
Titles
ro
I~"
,'\.
3-7 Laplacian Operator
.av .av .av
ax ay az
aAx aAv aAz
a2v a2v a2v
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 181
Titles
Chapter 3 Relationships
ax ay ilz
By az az ax
~ (aBI' aBx)
a2v a2v a2v
v s
s c
Images
Image 1
Image 2
Page 182
Titles
182
CHAPTER HIGHLIGHTS
GLOSSARY OF IMPORTANT TERMS
CHAPTER 3 VECTOR ANALYSIS
Page 183
Titles
A(B·A)
a a IAI2'
A(B ·A)
D = B - IAI2
PROBLEMS
(d) A x C,
Images
Image 1
Tables
Table 1
Page 184
Titles
y =x -I.
(e) P3 = (4, n. 5)
Tables
Table 1
Page 185
Titles
P3 = (1, -I, 2)
Images
Image 1
Image 2
Image 3
Page 186
Titles
(a) A = xy2 + yxz + z4 at PI = (1, -I, 2)
Images
Image 1
Image 2
Image 3
Page 187
Titles
I/-'\'-~ ~-~\~-/I
t t . * + * . t t· * + • • t t
t J! :/
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Tables
Table 1
Page 188
Titles
(h) A = x sin C~) + ysin C~'), for -10:s x, y:s 10
~,
1/
I \
/
. " {o
Images
Image 1
Image 2
Tables
Table 1
Table 2
Page 189
Titles
189
~L:Lx
--....L..--__t*"----- X
~-_~~_-":!-- x
o
:kLx
(e) E = r (3 - l~r) + zz
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 190
Titles
190
Page 191
Titles
Electrostatics
c
H
A
p
4
T
E
R
Chapter Contents
Objectives
Images
Image 1
Image 2
Page 192
Titles
4- 2 Charge and Current Distributions
V' ·B=O,
Max well's Equations
192
4-1
Images
Image 1
Image 2
Image 3
Image 4
Page 193
Titles
4-2.1 Charge Densities
! ! 21°.1-,
Q = Pe dz = 2z (/:L = z () = 10 - C.
° ()
PI = lJ~o M = dt
Example 4-2: Surface Charge Distribution
Example 4-1: Line Charge Distribution
Images
Image 1
Image 2
Image 3
Page 194
Titles
6r ~
Ps = ., = 2 x IO-r
. 3 x 10--
Q = f Ps ds
= f f (2 x 102r)r dr dif>
3 0
I-M-l
Sq = Pvu . /).s /).t
/'>.q = p,u' /'>.5 Sr,
/'>.q
(4.9)
4-2.2 Current Density
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 195
Titles
/I'\..
/ . ,
4-3 Coulomb's Law
Images
Image 1
Image 2
Image 3
Page 196
Titles
196
E = EI + E2
E
(VIm). (4.19)
4-3. t Electric Field due to Multiple Point Charges
I [ (R - Rd (R - R2) ]
R2 = -x3 + y - z2,
Images
Image 1
Image 2
Image 3
Page 197
Titles
dE
197
(VIm).
108JrEo
-5 X - 5'4 - z2 -'i
. I08JrEo
x2 - 5'8 - z4 x 10-10
I [2(X2 - 5'2 - z) 4(X6)] -5
4JrEo 27 216
4JrER'- 4JrFR'-
(4.20)
E = JdE = _1_ Ji' Pv dV'
4Jr£ RI2
4-3.2 Electric Field due to a Charge Distribution
41rE RI2
41rE R,2
Images
Image 1
Image 2
Image 3
Page 198
Titles
z
R'I = =ib + zh.
z
I A'Pedl
pfh (-rb+zh)
Example 4·4: Electric Field of a Ring of Charge
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 199
Titles
E
Images
Image 1
Image 2
Image 3
Image 4
Page 200
Titles
4-4 Gauss's Law
V·D=py
f V· D dV = f D . ds.
v s
s s
Images
Image 1
Image 2
Image 3
Page 201
Titles
201
,..
D , q
f f i'Dr·frdifJdz=pth
E= D =r Dr =r~ (4.33)
. . eO eO 271' sor
Example 4-6: Electric Field of an Infinite Line Charge
Images
Image 1
Image 2
Image 3
Page 202
Titles
Answer: E=YPtYI[rreo(y2+J)]. (See e-)
Answer: E = 0 for R < a;
E = Rpsa2 I(e R2) for R > a. (See e-)
Answer: (a) D = RPvRI3,
(b) D = RPva3/(3R2). (See ~)
4-5 Electric Scalar Potential
(4.36)
(4.35)
(4.34)
(1).
Fcx! = =F; = -'lE.
d W = F ex! . dl = -'1 E . dl
The term "voltage" is short for "voltage potential" lind
4-5.1 Electric Potential as a Function of Electric
dV = - = -E·dl
(4.37)
Tables
Table 1
Page 203
Titles
f (\7 x E) . ds = f E . dl = 0,
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 204
Titles
4-5.2 Electric Potential Due to Point Charges
(4.48b)
(surface distribution),
I J Ps ,
V=- -ds
41r8 R'
v = _1_ J Pv dV' (volume distribution), (4.48a)
41r8 R'
v'
4-5.3 Electric Potential Due to Continuous
(V). (4.43)
p
4-5.4 Electric Field as a Function of Electric
v = _1_ J Pl dl' (line distribution).
41r8 . R'
r
(4.48c)
V=- R-- 'RdR=--
£IV = -E·dl.
£IV = VV· £II.
IE = -VV. (4.51) I
v- _1 '" qi
- 41rs (;;j IR - Ri J
(V). (4.47)
Images
Image 1
Image 2
Page 205
Titles
Example 4-7: Electric Field of an Electric Dipole
E = -V'V
oR + R ae +. R sin e il¢ ,
P'R
V=--.".
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 206
Titles
qd .. ~ ~
4-5.5 Poisson's Equation
Pv
V-V = V· (VV) = -- + -. - + -. ,
Images
Image 1
Image 2
Page 207
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 208
Titles
4-6.1 Drift Velocity
=aE,
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 209
Titles
4-6.2 Resistance
Images
Image 1
Image 2
Page 210
Titles
(4.72)
R I
V = VI - V2 = - f E· dl
+ -
v
= - fiE,. i dl = E,I
J = f J. ds = f erE· ds = a ExA
Example 4-9: Conductance of Coaxial Cable
(4.73)
, J
E=r-­
,I , J
(4.70)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 211
Titles
fa fil I r·rdr
VI =- E·dl=- -- ---
P = ! alEI2 dV
1 (b)
G'= G
I Zn o
= ---
4-6.3 Joule's Law
= (a ExA)(E,l) = IV
P = !E'JdV
(W)(Jou]e's law), (4.79)
Images
Image 1
Image 2
Page 212
Titles
Technology Brief 7: Resistive Sensors
Piezoresistivity
Images
Image 1
Tables
Table 1
Page 213
Titles
-------&-------. Foree (N)
( CiF)
Images
Image 1
Image 2
Page 214
Titles
YOU! = Vo (f..R)
IE)
F=O
Images
Image 1
Image 2
Image 3
Image 4
Page 215
Titles
215
E
E
E E E
E
1
E
1
-
4- 7 Dielectrics
Images
Image 1
Image 2
Image 3
Image 4
Page 216
Titles
216
4-7.1 Polarization Field
4-7.2 Dielectric Breakdown
D = EoE + P,
Images
Image 1
Image 2
Tables
Table 1
Page 217
Titles
fE.dl= !Et.itdl+ !E2.i2dl=0.
4-8 Electric Boundary Conditions
(VIm). (4.90) I
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 218
Titles
Example 4-10: Application of Boundary CondItions
J... !J.h
L- __ ..;.....-~ ... 2"
c d
---111-
218
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 219
Titles
219
z
Ell jErx+Efy
tan (h = - = ..:.....----
E2x = Elx,
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 220
Titles
220
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 221
Titles
4-8.1 Dielectric-Conductor Boundary
(4.100a)
Elt = Dlt = 0,
Din = slEln = Ps·
Images
Image 1
Image 2
Image 3
Page 222
Titles
4-8.2 Conductor-Conductor Boundary
(81 82)
(electrostatics) .
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 223
Titles
Input
!._Q.!
223
Images
Image 1
Image 2
Tables
Table 1
Page 224
Titles
224
4-9 Capacitance
v
+
(4,105)
Figure 4-23: A de voltage source connected to a capacitor
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 225
Titles
leE.ds
- fE.dl
(F),
Images
Image 1
Page 226
Titles
v
+
z
,
o 0
(4.114)
(4.115)
Q (h)
(4.113) I
Example 4-12: Capacitance Per Unit Length of Coaxial
Line
! C Zn e
(4.117)
Images
Image 1
Image 2
Image 3
Image 4
Page 227
Titles
4-10 Electrostatic Potential Energy
Images
Image 1
Image 2
Image 3
Page 228
Titles
Technology Brief 8: Supercapacitors as Batteries
Capacitor Energy Storage Limitations
Images
Image 1
Page 229
Titles
Energy Storage Comparison
Images
Image 1
Image 2
Image 3
Page 230
Titles
Future Developments
0.01 +----------.------.--------.....,
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 231
Titles
I mage Method
F = - V We = -z ~ -- = -z -,,- ,
rlz 2EA ~EA
Answer: We = 4.1 J. (See <"1')
4-11
If J
v
Images
Image 1
Image 2
Page 232
Titles
if
l;J \\ C V=o
\', l r c
-Q
v=o
if
- - - - - - -' - - - - - ~
~'~
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 233
Titles
t
Chapter 4 Relationships
Example 4-13: Image Method for Charge Above
Images
Image 1
Image 2
Page 234
Titles
Air ---+--
Fluid Gauge
Technology Brief 9: Capacitive Sensors
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 235
Titles
/
:=: 1"=,,,1"="11,11
Humidity Sensor
Pressure Sensor
Noncontact Sensors
Images
Image 1
Page 236
Titles
d1 1 .10 C1
1.10
3TC2
Images
Image 1
Page 237
Titles
,,~:::::::~,
I:: r.
"I' 1::
,','" =-» c,
c
Fingerprint Imager
Images
Image 1
Image 2
Page 238
Images
Image 1
Image 2
Image 3
Page 239
Titles
E __ 1_ qi(R - Ri)
1 f AI Ps ds'
E - _1_ f ft' Pe dl'
=z-
E= D =1' Dr =r~
Chapter 4 Relationships (continued)
- - !E'dl
E=-VV
CHAPTER HIGHLIGHTS
Images
Image 1
Image 2
Image 3
Page 240
Titles
240
GLOSSARY OF IMPORTANT TERMS
PROBLEMS
p; = IOR2 cos2 (J (mC/m3).
* . ~
Images
Image 1
Page 241
Titles
241
,
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 242
Titles
D = x2(x + y) + y(3x - 2)')
,
,
,
..
..
..
..
..
..
..
,
,
----------------~~------------~x
Images
Image 1
Image 2
Image 3
Page 243
Titles
v
v
v
....
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 244
Titles
(a, 0)
• 18
Images
Image 1
Image 2
Image 3
Page 245
Titles
1----1 cm----f
(Vim)
-
~----------~II:~+~--------~
Images
Image 1
Image 2
Page 246
Titles
T
1
(a)
2cm
T
1
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 247
Titles
r ••••.• --:---i- ... - .... ~
, I I.....'
: J::D-
v
+
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 248
Titles
d - - -. Q = (0, d, d)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 249
Titles
Magnetostatics
c
H
A
p
5
T
E
R
Chapter Contents
Objectives
Images
Image 1
Image 2
Page 250
Titles
Overview
Fm=quxB
v ·B;'O,
5-1
Magnetic Forces and Torques
Images
Image 1
Image 2
Tables
Table 1
Page 251
Titles
Fm = quB sin f)
(a)
R
(b)
dW = Fm ·dl = (Fm -u) dt = O. (5.6)
I F = Fe + Fm = qE+ qu X B == q(E + u X B). (5.5) I
Images
Image 1
Image 2
Image 3
Page 252
Titles
5-1.1 Magnetic Force on a Current-Carrying
Images
Image 1
Tables
Table 1
Page 253
Titles
(S.12)
(S.11 )
2S3
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Table 2
Page 254
Titles
(a)
8
Fl = x(2lr) x yBo = z21rBo (N).
Example 5-1: Force on a Semicircular Conductor
R
c
= -Z/ f rBosin¢ d4> = -s u-s; (N).
Images
Image 1
Image 2
Image 3
Page 255
Titles
F
(S.14)
T=dxF
5-1.2 Magnetic Torque on a Current-Carrying
Images
Image 1
Image 2
Image 3
Page 256
Titles
f' gO/H L
B FJ
f 1 CD
Im=iNIA=nffl
= (-x~) x (zlhBu) + (x~) x (-Z1bBo)
=yfahBo=y/ABo, (5.16)
Images
Image 1
Image 2
Tables
Table 1
Page 257
Titles
Answer: I = 8 rnA. (See e )
5-2 The Biot-Savart Law
I dl x R
Images
Image 1
Image 2
Image 3
Image 4
Page 258
Titles
2SR
,
,
,'R
s
P®dH
(5.23)
5-2.1 Magnetic Field due to Surface and Volume
H= 4~ f Js;/l ds
s
H=4~f J;2RdV
=411' ~
Example 5-2: Magnetic Field of a Linear Conductor
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 259
Titles
2S9
(a)
z = -reote.
p
1/2
Jr2 + (1/2)2
-1/2
- Jr2 + (1/2)2
(S.29)
(T).
(S.2S)
R2 -«II 4n 7 d z:
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 260
Titles
\
" ,
- -
\
t
,
...• , \ \
, I I I
- .". , I
~ , I I I
..•.. - , , , ,
,~"""" •....
""" •.... ~--
" ..•.
\ ,
I \ I
, ~
...• ~
- ~ , " , \ \ \ t I , ,
- , , , , \ \ \ , II , ~
- ~'''' \ \ \ \ I 1
, - - , " , \ \ \ \ \ \
~ - ~"" \ \ \ \ ,
Example 5-3: Magnetic Field of a CIrcular Loop
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 261
Titles
(AIm). (5.34)
I _ I dl
d H = -- Idl x RI = 1 '
4n R2 4n(a- + z2)
_ _ _ I cos (i
(5.36)
5-2.2 Magnetic Field of a Magnetic Dipole
H= 4Jl'R3 (R2cos8 +8sin8)
(for R »a). (5.38)
-
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 262
Titles
~ 41 ~
5-2.3 Magnetic Force Between Two Parallel
~ I
4rrr
262
Images
Image 1
Image 2
Image 3
Image 4
Page 263
Titles
!B.dS=O.
v . D = p; •••• f D . ds = Q.
5-3.1 Gauss's Law for Magnetism
5-3 Maxwell's Magnetostatic Equations
(5.42)
(5.41 )
I F2 ,fLo/1/2
F~=-=-y--.
~ I 2nd
II' ( ') flO II
= ~ z x -x --
~ 2rrd
, fLo/llll
Zn d
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 264
Titles
Technology Brief 10: Electromagnets
Basic Principle
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 265
Titles
The Doorbell
Magnetic Relays
Images
Image 1
Tables
Table 1
Page 266
Titles
The Loudspeaker
Magnetic Levitation
(
Images
Image 1
Image 2
Image 3
Page 267
Titles
TECHNOLOGY BRIEF 10: ELECTROMAGNETS
267
Figure TF1 0-4: The basic structure of a speaker.
Figure TF10-5: Magnetic trains. (Courtesy Shanghai.com.)
Images
Image 1
Image 2
Image 3
Image 4
Page 268
Titles
5-3.2 Ampere's Law
, ,
VxH=J •.• fH.dl=,.
s s
Images
Image 1
Image 2
Page 269
Titles
,
- - ~
269
y
...
.. ...
--_ .•
f HI ·dll = 'I,
,
...
L---~a~------------------~~r
HCa) = .L:
H
H
H
(c)
H
0'
Example 5-4: Magnetic Field of a Long Wire
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 270
Titles
II = -, 1= - 1.
(for rj :::a).
1
(for r: :::: 0).
Images
Image 1
Image 2
Image 3
Page 271
Titles
Example 5-6: MagnetiC Field of an Infinite Current Sheet
z
{ -yH
H= yH
I A t,
-y -
H= 2
'---~ - - - - - - -- -:~
;~.~E ;.~ ... ~._.~~_~.~ __ r : J:~~!~----LJ ...• ~. +~--Y
, , N 1
H=-,H = -,-
2nr
f H . dl = f (-~H) . ~r d ¢ = - 2n r H = - N I.
e 0
Images
Image 1
Page 272
Titles
V x (V x A) = fLJ.
V2A = V(V . A) - V x (V x A),
272
5-4 Vector Magnetic Potential
V·A=O.
"
(5.52)
V = _1-/ Pv dV'.
v'
(5.62)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 273
Titles
1=-- = --.
5-5.1 Electron Orbital and Spin Magnetic
5-5 Magnetic Properties of Materials
A- = !!:..- / J.r sv'
v'
Images
Image 1
Image 2
Page 274
Titles
274
(5.72)
5-5.2 Magnetic Permeability
- - - -
- -
L. ----- - -
( eu) ,
eur (e)
----- - L
(5.73)
en
In, = ---,
Images
Image 1
Image 2
Image 3
Image 4
Page 275
Titles
Answer: (a) m.; = 9.3 x 10-24 (A.m2),
(b) M = 7.9 X 105 (AIm). (See )
5-5.3 Magnetic Hysteresis of Ferromagnetic
Images
Image 1
Tables
Table 1
Page 276
Titles
B
B
B
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 277
Titles
(5.81)
5-6 Magnetic Boundary Conditions
fH.dl= f HI' i, dE+ f H2' i2d£ = I.
e "
(5.82)
0'["2 X (HI - H2)1 = Js : D.
(HI - H2)' t, !11 = J,'" .6./.
f B . ds = 0 •••. I BIn = B2n·1
Images
Image 1
Image 2
Page 278
Titles
5-7 Inductance
5-7.1 Magnetic Field in a Solenoid
Images
Image 1
Image 2
Image 3
Image 4
Page 279
Titles
- un I . e . )
A .. zJ.l
B~zJ.l
(5.86)
dB = fl dH = z ) 1 1/1 dz.
-a-!
5-7.2 Self-Inductance
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 280
Titles
/ ~~:-:-:~::::::-::- .. -=-= .. --:--r t
__ __ .. _ ~ ~ ~t f 1
N2
/,( N), N
s
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 281
Titles
(5.100)
5-7.3 Mutual Inductance
(5.98)
Example 5-7: Inductance of a Coaxial Transmission
4> = If B dr = If I·Ll dr = /Lll In (~) .
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 282
Titles
2H2
(5.105)1
Even though this expression was derived Ior a solenoid, it
5-8 Magnetic Energy
Example 5-8: MagnetiC Energy in a Coaxial Cable
Images
Image 1
Image 2
Image 3
Image 4
Page 283
Titles
B =. JJ..ol
Ta2
H = z --:;--~...",
L = ~ = ~ = ~ f B· ds
H=-=-,
If') til2 f I
v v
Chapter 5 Relationships
T=mxB
c
V . B = 0 ..•••. f B . ds = 0
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 284
Titles
Technology Brief 11: Inductive Sensors
Linear Variable Differential Transformer (LVDT)
• •
Images
Image 1
Image 2
Page 285
Titles
o
Images
Image 1
Image 2
Image 3
Page 286
Titles
Eddy-Current Proximity Sensor
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 287
Images
Image 1
Page 288
Titles
PROBLEMS
o
0B
o
o
10 0 01
o
o
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Table 2
Page 289
Titles
,
,
- - ,
-------:-:=.~
I
---
~t- .;...i ----I~y
n
Images
Image 1
Image 2
Image 3
Image 4
Page 290
Titles
----:....--------1 •... ----- •. x
P
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 291
Titles
T l,-IOA
t ~2m-013~IOA
_I G)l,-IOA
291
H
!I
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 292
Titles
r
=-z-- X v
Images
Image 1
Image 2
Page 293
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 294
Titles
z
x
A------------y
y
d
Images
Image 1
Image 2
Image 3
Image 4
Page 295
Titles
Maxwell's Equations for
Objectives
R
E
T
p
6
A
H
c
Chapter Contents
Images
Image 1
Image 2
Page 296
Titles
296
Dynamic Fields
6-1 Faraday's Law
Images
Image 1
Tables
Table 1
Page 297
Titles
Vcmf = -N d = -N !!... f B· ds
s
Images
Image 1
Image 2
Image 3
Page 298
Titles
6-2 Stationary Loop in a Time-Varying
f 1 1
R
,
R
2
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 299
Titles
f liJB
c s
s s
Example 6-1: Inductor In a Changing Magnetic Field
V~~f = f E· dl.
Images
Image 1
Image 2
Image 3
Page 300
Titles
300
z
(A).
= j B· ds
= j[BO(Y2+Z3)SinM].ZdS
lr d
= -3][N(va2Bocoswt.
Images
Image 1
Image 2
Page 301
Titles
(Wb),
tr del>
Vemf = -- = 1.2 (V).
dt
Example 6-2: Lenz's Law
eI> = f B· ds = f (-zO.3t)· z ds
s s
= -0.3t x 4 = -1.2t
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 302
Titles
1=
6-3 The Ideal Transformer
- - - - ~
---
---
V~ = -N~ -.
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 303
Titles
6-4 Moving Conductor in a Static
:~
11 N2
.......... =--
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Table 2
Page 304
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Page 305
Titles
z
R
u
(V).
Be\']) = iO.2e-O.1Y1 = zO.2e-O.2 (T).
Example 6-4: Moving Loop
(6.28)
o
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 306
Titles
f d:
VI2 = f (u X B) . dl
R 5
B0
Images
Image 1
Image 2
Tables
Table 1
Page 307
Titles
y
B = 7oRo,
B
x
"
o
~'i'­
6-5 The Electromagnetic Generator
Images
Image 1
Image 2
Image 3
Image 4
Page 308
Titles
~ w
+ f [( -DW~) x IBo] ·xdx.
= f [(DW~) x iBo] ·xdx
Images
Image 1
Page 309
Titles
B
Vcmf = V:~f + Ve~f
c
JaB J
= - at . ds + j (u x B) . dl.
s c
6-6 Moving Conductor in a
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 310
Titles
Technology Brief 12: EMF Sensors
Piezoelectric Transducers
1/ -0
--. ./
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 311
Titles
-,
Faraday Magnetic Flux Sensor
Images
Image 1
Image 2
Image 3
Page 312
Titles
Thermocouple
Images
Image 1
Image 2
Page 313
Titles
Id = IJd ·ds = I ~~ -ds, (6.44)
s s
dVc d
dt dt
s s s
a
= --;- (BoA cos2 tot )
a
Example 6-6: Electromagnetic Generator
f H . dl = Ie + f ~~ . ds (Ampere's Jaw). (6.43)
c s
6- 7 Displacement Current
Images
Image 1
Image 2
Page 314
Titles
\
faD
12d = - ·ds
at
Images
Image 1
Image 2
Image 3
Image 4
Page 315
Titles
315
6-9 Charge-Current Continuity Relation
6-8 Boundary Conditions for
Images
Image 1
Tables
Table 1
Page 316
Titles
J
J
I = - d Q = _!!... f p av
1 V· J= -if, (6.54>1
which is known as the charge-current continuity relation, or
f J . ds = - :t f p; dV.
s V
V·J=O,
f J. ds = 0 (Kirchhoff·scurrentlaw).
(6.56)
V, J dV = - -. dV.
Images
Image 1
Image 2
Image 3
Image 4
Page 317
Titles
6-10 Free-Charge Dissipation in a
Electromagnetic Potentials
6-11
at E
Images
Image 1
Image 2
Image 3
Image 4
Page 318
Titles
318
E= -VV
v x E+- =0
at
6-11.1 Retarded Potentials
(dynamic case). (6.70) I
v'
v'
E' = -VV.
E=E+-~ .
Images
Image 1
Image 2
Image 3
Image 4
Page 319
Titles
v'
6-11.2 Time-Harmonic Potentials
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 320
Titles
320
Example 6-8: Relating E to H
V(R) = - Pv i e dV' (V). (6.82)
v'
(6.88)
(6.89)
(6.91 )
(6.90)
y Z
a/ay a/az
x
(6.83)
(6.86) I
(6.87)
~ I ~
VxE=-jw~ii
,.",1-
H=--VxE.
A(R) = ; f J{Ri) ;, dV', (6.84)
v'
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 321
Titles
Chapter 6 Relationships
B=V'xA
H(z, t) = me [H(Z) ejUJl]
= y 0.11 sine JOIOt - 133z)
'. IOk2 -,kz
V =-N -·ds
s
k=w.j!I£
at
det> d f tr m
V. f = -- = -- B· ds = V mf + V mf
Images
Image 1
Image 2
Page 322
Titles
CHAPTER HIGHLIGHTS
GLOSSARY OF IMPORTANT TERMS
PROBLEMS
* . .. .
~------~~~------~
~==:::::::::II
Rl
Images
Image 1
Page 323
Titles
T
1
~----------------------~y
z
(b) cot = n /4
Images
Image 1
Image 2
Image 3
Image 4
Page 324
Titles
z
Yo
o
o
--
\
80 ... '
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Page 325
Titles
a = 10-4 (S/m)
Pv = Par cos w{ (C/m3).
T
1
I
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 326
Titles
(VIm).
(AIm).
E = xEosinaycos(wt - kz),
E(R, e; t) =
, 2 X 10-2
Images
Image 1
Page 327
Titles
Plane-Wave Propagation
Chapter Contents
R
E
T
Objectives
p
7
A
H
c
Images
Image 1
Image 2
Page 328
Titles
32R
Unbounded EM Waves
, .. ~
/,:"-~" .. ",
Images
Image 1
Tables
Table 1
Page 329
Titles
0.3)
- -
V x H = jUJt:cE.
- ( a)-
= (a + jwE)E = jUJ E - ': E.
v ·E= pv/e,
V x E= -jw/LH,
V x ii = J + jUJeE.
~ ~ ~
V x H = J + jwt:E
E(x, y, z; t) = me [R(x, y, z) ejwtJ. (7.1)
7-1.1 Complex Permittivity
RL
Time-Harmonic Fields
7-1
Images
Image 1
Image 2
Image 3
Image 4
Page 330
Titles
7-2 Plane-Wave Propagation in Lossless
- -
E =-.
2- (a2 a2 a2 ) -
V E- - - - E
- a2+,,2+a2 .
- -
~ ~
7-1.2 Wave Equations
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 331
Titles
7-2.1 Uniform Plane Waves
0.26)
HI' =0,
H~ ( ) - ~E+ -jkz - H+ -jkz
H"o = -ErO'
1 aEt(z)
~ 1 aEt(z)
H,,= -.- =0.
iJE~(z)/iJx = aE~(z)/ay = O.
0.22)
0.21)
~ + ~ + ~ (iE, +yE" +zE;,J
A (aH\' aHx) A. -
z iJx - ay = zjwE:Ez.
Ex(z) = E~(z) + E;(z) = E;oe-jkz + E~oejkz. (7.25)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 332
Titles
E
Example 7-1: EM Plane Wave in Air
A = - = = 300 m
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 333
Titles
(llA/m).
- I, - I - '£+ (z)
- I , ,- , '£-(z) ,E-() 'k
7-2.2 General Relation Between E and H
H
s-.
E '<.
30n 3
[(z, t) = xlE~ol cos(u)t - kz + 4>+)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 334
Titles
------------ E
H,'
y
0.44)
-+ -
- 1. - A E, (7) A Et(L)
H = - z x E = -x _. - + Y _. - .
n rJ 1/
E- • E- + .. • f.~+. )
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 335
Titles
Technology Brief 13: RFID Systems
RFID System Overview
RFID Frequency Bands
Images
Image 1
Image 2
Page 336
Titles
t
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 337
Titles
(7.46)
(7.47a)
Output
- -jkf.
Plane Wave
Module 7.1
7-3 Wave Polarization
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 338
Titles
I (Ed7o,t»)
IE(L. 1)1 = [a; + a;]lj21 cos(O)t - kL)I.
7-3.1 Linear Polarization
8
Exo = ax.
2 2 Ij2
IE(z. t)1 = [E,(z, t) + Ey(z, t)]
Images
Image 1
Image 2
Page 339
Titles
7-3.2 Circular Polarization
1 [E\,(Z,I)]
••
E
,~ -
Images
Image 1
Image 2
Page 340
Titles
z
~rnn'
Example 7-2: RHC Polarized Wave
Images
Image 1
Image 2
Tables
Table 1
Table 2
Table 3
Page 341
Titles
tan X = ±- = ±- ,
7-3.3 Elliptical Polarization
H(y, t) = 9te [H(Y) ejM]
(rad/m) ,
4
= -xl z e '
w.,ft;
k=--
.,ft;
-A
E(y) = xEx + zEL
Images
Image 1
Image 2
Image 3
Image 4
Page 342
Images
Image 1
Image 2
Tables
Table 1
Page 343
Images
Image 1
Image 2
Page 344
Titles
344
Module 7.2 Polarization I
UNEAR POLARIZATION
OUtput
(J f "" QO
ModUle 7.3
Q t d.11Ik.
.BllelJ
Images
Image 1
Image 2
Image 3
Page 345
Titles
Technology Brief 14: Liquid Crystal Display (LCD)
Physical Principle
LCD Structure
Images
Image 1
Page 346
Titles
/
"----~~
"----
Two-Dimensional Array
Images
Image 1
Image 2
Page 347
Titles
347
1
v
Images
Image 1
Image 2
Image 3
Image 4
Page 348
Titles
7-4 Plane-Wave Propagation in Lossy
(Q). (7.70)
(rad/m).
(Np/m) ,
1 + (~:r -1
{ us' [
a=w "2
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 349
Titles
( £")
a :::= w;/I ff, = i/f- (Np/m), (7.75a)
f3 :::= w.fijii =w...;'"iW (radlm). (7.75b)
V -;; 2£' V e 2w£
7 -4.2 Good Conductor
( E") 1/2
y = jwj;ii 1 - j-;;
7-4.1 Low-Loss Dielectric
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 350
Titles
Example 7-4: Plane Wave in Seawater
4
a
WErSO 2rr x ]03 x 80 x (l0-9/36rr)
=9x105.
=
a.=~
a.
a
= (h ejrr /4) 0.126 = O.044ejrr /4
Images
Image 1
Tables
Table 1
Page 351
Titles
IExol = 4.44
E(z, t) = 9lr [xIExoleJ¢oe-aze-Jf!zeJwt]
= xIExole-0.126z cos(2rr x \03t - 0.126z + 4>0)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 352
Titles
352
Ib~
z
W Envelope W Show S s
Module 7.4 Wan Attenuation
It onr
z
z=oo,,=oo Iml
Phasors
0'
1=5.0"
Average Power Density
-J
-
7-5 Current Flow in a Good Conductor
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Image 11
Page 353
Titles
(7.90)
1
Z="",=-- -
o
- ,
--'I
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 354
Titles
, I , Rs (1 1)
R = RI + R2 = - - + -
I I
n, = a~, = J;r~1l
Images
Image 1
Image 2
Image 3
Image 4
Page 355
Titles
7 -6.1 Plane Wave in a Lossless Medium
~ ~
k
(W/m2). (7.100) I
7 -6 Electromagnetic Power Density
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 356
Titles
.•.
.•.
.•.
s
.••. ----- ..•.
,
.•. "
" S ,"
/ ..•... -.-~,'
A,ph = 47rRs
Example 7-5: Solar Power
(VIm).
7-6.2 Plane Wave in a Lossy Medium
E(z) = x Ex(z) + y Ey(z)
= (x E,o + y El'o)e-rX7e-i/lL,
- 1 A A -CtZ -jIlT.
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 357
Titles
~ ~ ~ ~ Ie ~
Whereas the fields E(J:) and "(7) decay with 7. as e='. the
7-6.3 Decibel Scale for Power Ratios
PI
G = P2' (7.110)
[IE(Z)12] [IE(Z)I]
A = IOlog IE(0)12 = 20 log IE(O)I
(V2/R)
Vi/R
Example 7-6: Power Received by a Submarine Antenna
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 358
Titles
Chapter 7 Relationships
k f
I [ ] } 1/2
a=w 2" 1+(7)-1
I [ ] }1/2
f3=W 2" 1+(7) +1
- 1 ~ -
E= -l'/kxH
Images
Image 1
Image 2
Image 3
Page 359
Titles
GLOSSARY OF IMPORTANT TERMS
(mAim).
CHAPTER HIGHLIGHTS
PROBLEMS
Images
Image 1
Page 360
Images
Image 1
Page 361
Images
Image 1
Image 2
Page 362
Titles
E = x Eo cos(wt - ky)
(Vim).
(Vim).
z
L----E----/1
a" 1 "
x
(VIm).
*
Images
Image 1
Image 2
Page 363
Titles
1 ! I! 2
I! I! 2
o 0
Images
Image 1
Page 364
Titles
Wave Reflection and Transmission
c
H
A
p
8
T
E
R
Chapter Contents
Objectives
Images
Image 1
Image 2
Image 3
Page 365
Images
Image 1
Image 2
Page 366
Titles
8-1.1 Boundary between Lossless Media
z=o
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 367
Titles
(8.1 a)
(8.1 b)
H-,'() • E (z) • Ell -,'klz
z=zx--=y-e' .
Z - x oe ,
Z -zx---y-e .
z=o
z=o
Ei
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 368
Titles
Eo = (T12 - TIl) Eo = rE~,
I (2m) Ei E'i
(X. I I b)
TIl = --,
Fr:
Tl2 = --,
..;s;;
r= E? = 112 -1]1 (normaHncidence), (8.12a)
(8.13) I
8-1.2 Transmission-Line Analogue
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 369
Titles
IEilry
8-1.3 Power Flow in Lossless Media
n = 0, 1. 2, , if Or ~ 0,
Images
Image 1
Image 2
Image 3
Image 4
Page 370
Titles
(lossless media), . (Se2l)
A~ = -- = -- = 1 cm.
~ Fr 3
Example 8-1: Radar Radome Design
, ,
(a)
~
d
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 371
Titles
EI (z) = xEi(e-Y1L + reYI7),
_ Ei
HI (z) = y --2.(e-Ylz - reYP'),
Ei
Er
r..JH'
z= 0
8-1.4 Boundary between Lossy Media
Medium 1
(n = 0, \,2 .... )
= - +n -
4 2
1}1 = fFH = t! :::: 120rr (Q),
1}2 = Y -;; = y -;;; . Fr :::: v'2.2s = SOrr (Q),
Example 8-2: Yellow Light Incident upon a Glass
Surface
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 372
Titles
- Eb 'kk
Images
Image 1
Image 2
Image 3
Page 373
Titles
~-Fz
r= ,
~+Fz
with cel = (Bl - jUllw) and eC2 = (£2 - jU2/w). (See 4,.)
8-2 Snell's Laws
~ ..
., ~
~ ,
.. '
...
Images
Image 1
Image 2
Image 3
Image 4
Page 374
Titles
sinOt = "Ill = JILISI
Images
Image 1
Image 2
Image 3
Image 4
Page 375
Titles
Example 8-4: Light Beam Passing through a Slab
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 376
Titles
376
8- 3 Fi ber Optics
(8.39)
(8.37)
. ne
Images
Image 1
Image 2
Image 3
Image 4
Page 377
Titles
I-T-J
..•.. f\f\f\
Example 8·5: Transmission Data Rate on Optical Fibers
I I
Images
Image 1
Image 2
Image 3
Page 378
Titles
Technology Brief 15: Lasers
'11
Basic Principles
Images
Image 1
Image 2
Page 379
Titles
Wavelength (Color) of Emitted Light
Principle of Operation
Images
Image 1
Image 2
Image 3
Image 4
Page 380
Titles
8-4 Wave Reflection and Transmission at
Images
Image 1
Image 2
Image 3
Page 381
Titles
-. r. 0 'k
8-4.1 Perpendicular Polarization
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 382
Titles
x
z=o
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 383
Titles
1 •. L=1 +f'l.. (859)1
(8.60)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 384
Titles
(VIm).
(VIm).
8-4.2 Parallel Polarization
lEt 12 (62)2
. kl 'In
E1 =E~ +E~
8t = 14S.
Al = - = 1m
kl '
COSel + ../(c2/c1) - sin28j
Images
Image 1
Image 2
Image 3
Page 385
Titles
cosBi
I'll = (I + ['II) -n . (8.67)
cos 171
11 rJ2 1J2
x
Transmitted Wave
Reflected Wave
Images
Image 1
Image 2
Image 3
Image 4
Page 386
Titles
rs.x»
8-4.3 Brewster Angle
Os" = sin-I
(for III = 1l2). (8.12)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 387
Titles
Answer: r .L = -0.48, <~ = 0.52, rll = -0.16,
8-5 Reflectivity and Transmissivity
Images
Image 1
Image 2
Image 3
Page 388
Titles
i j IE~ol
Pr s. A IE~LOI2 A 0
Pt st IE~LOI2 A 0
lEt 12
+ ----='=L. A cos Ot.
RII + Til = 1,
~1~~~~X::'>.1~~:~~',~~:,:· '~{~~~~~
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 389
Titles
-(E2/E])cosaj + J(8218» - sin2aj
(82Iel) cos aj + J (e2/EI) - sin2 OJ
----r======:;;===- = -0.435.
I EX81T1ple 8-7: Beam of Light
Images
Image 1
Image 2
Tables
Table 1
Page 390
Titles
Technology Brief 16: Bar-Code Readers
Basic Operation
Images
Image 1
Image 2
Image 3
Page 391
Images
Image 1
Image 2
Page 392
Titles
8-6 Waveguides
Images
Image 1
Tables
Table 1
Page 393
Titles
y = b .--..,.----..,.---:-:---r-----
" \ : : : /\./'-+--
y = 0 L----\~':r.--/-' ------- ------.. z
/
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 394
Titles
8- 7 General Relations for E and H
E = x Ex + y ii, + i E 7..
Images
Image 1
Image 2
Image 3
Page 395
Titles
8-8 TM Modes in Rectangular
k=w,fili.
ay .
. ~ Bez .-
aev ae, .-
B!J, ahx . _
ax ay
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 396
Titles
- --, + - --, + k~ = O.
k; -b'
t, = o,
Images
Image 1
Page 397
Titles
o
~\t-lj2··\
rrltl\\~
o~:l:plllr.f=~
bdt':l:g~li~
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 398
Titles
f3 = u: 11- (17) 2., (TE and TM) (8.107)
Ex E\' f3TJ 1- (ff'Il1I1)2
ZTM = -=- = - ~ = - = 1/
Er - - f3 + - + - .
Example 8·8: Mode Properties
Images
Image 1
Image 2
Page 399
Titles
- (mn X) (I1n \') "f3
~ jWJ1 (lin) (mnx) . (/lny)
x kl; b a b
~ jfi (/In) (mnx) . (nny)
~ -jWJ1 (mn) . (lnnx) (nny)
~" jfi (mn) .' (mnx) . (flny) e-j(3z,
kc a a b
8-9 TE Modes in Rectangular Waveguide
x sin(1.5n x IDIOt - 109nL)
Images
Image 1
Image 2
Page 400
Images
Image 1
Image 2
Tables
Table 1
Page 401
Titles
401
\
\
\
~mfO""
up = 7i .
I
8-10 Propagation Velocities
Images
Image 1
Image 2
Image 3
Page 402
Titles
(8. I 19b)
1 JTX
z =z+-.
II JTX
~ WJ.1 (JT) (JTX) 'I<
, 4 a a
~ (Wf.J..JT Ho ) 'I isrx ] 'jJ
Images
Image 1
Image 2
Image 3
Page 403
Titles
-
Images
Image 1
Image 2
Image 3
Page 404
Titles
CHAPTER 8 WAVE REFLECTlO'J i\\:f) TRi\\:Sl\lISSION
, .... Cl) Module ~tJ Rectangular \Ya,·eguidl·
o
Input
8-11
Cavity Resonators
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Page 405
Titles
8-] ] .1 Resonant Frequency
- "/3 '/3 (m7tx) (n7tY)
-
o
---- .4//2
------- A
,
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 406
Titles
8-11.2 Quality Factor
2a
Example 8-11 : Q of a Resonant Cavity
- [n x 12.6 x 109 x 4n x 10-7 x 5.8 x 107]1/2
a
Q=-
= 3 x 5.89 X 10-7 ::::::: 9,500.
Q = 8s [a3(d + 2b) + d3(a + 2b)]
/',.f ::::::: flO I
::::::: 1.3 MHz.
Images
Image 1
Image 2
Page 407
Titles
Chapter 8 Relationships
407
_ Eb _ 2112
r - --,... - ---'----
T=I+f
..;e;; - .j£;;
..;e;; + .j£;;
f.l = -.- = ""-------'----
T.l = -.- =
fll=-' =------
rll=-j =
lJsll = sin-I 1 = tan-I rei
upoJ(m)2 (n)2 (P)2
Images
Image 1
Image 2
Page 408
Images
Image 1
Page 409
Titles
z=o
I-d-I
(Vim).
PROBLEMS
*
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 410
Titles
4
\
Images
Image 1
Image 2
Image 3
Page 411
Titles
,.
-~
...... I
A .. .::: •••
T
1
fJr = I
,-d-I
T
t
1
Images
Image 1
Image 2
Image 3
Image 4
Page 412
Titles
~
Images
Image 1
Image 2
Image 3
Page 413
Images
Image 1
Image 2
Page 414
Images
Image 1
Page 415
Titles
Radiation and Antennas
R
E
T
Objectives
p
9
A
H
c
Chapter Contents
Images
Image 1
Image 2
Image 3
Page 416
Titles
416
-
'" -' '-'
Incident
~))
Wave launched
Overview
Images
Image 1
Image 2
Page 417
Titles
~
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 418
Titles
4lH
Q = (R, 0, 9)
.•
9-1 The Hertzian Dipole
A=- -- zlodz
.110 (e-jkR)
4;r R
A(R) = 110 f Je J sv'
4;r R' .
v'
(9.1 )
(A),
Images
Image 1
Image 2
Image 3
Image 4
Page 419
Titles
- I -
jwco
4rr kR (kR)2 •
~ lolk2 -kR [ j I j] .
Eo = -- lJoe J - + -- - -- Sill e
4lf k R (kR)2 (kR)3 '
9-1.1 Far-Field Approximation
~ A A fLolol (e-jkR)
Images
Image 1
Image 2
Image 3
Page 420
Titles
Dipole
9-1.2 Power Density
Images
Image 1
Image 2
Image 3
Image 4
Page 421
Titles
F(8, ¢) = F(e) = sin2 a.
•..
F(e, ¢) = S(R. e. ¢)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 422
Titles
y
~CJ.)~t == ====,°=10 II I· • 1
Module 9.1
9-2 Antenna Radiation Characteristics
Images
Image 1
Image 2
Image 3
Image 4
Page 423
Titles
= R2Smax f f F(8, ¢) sin e' de d¢
9-2.1 Antenna Pattern
dA = R2 sin B dB d¢
Images
Image 1
Image 2
Image 3
Image 4
Page 424
Titles
o
~
'2- -5
~
~
~
~
s
9-2.2 Beam Dimensions
For an isotropic antenna with F (0. ¢) = 1 in all directions,
Images
Image 1
Image 2
Page 425
Titles
4~ ff F(8, ¢) dQ
9-2.3 Antenna Directivity
o
co
.~
;.a -20
§
o
~
-5 70
'5 80
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 426
Titles
F(D,1')
Example 9-1: Antenna Radiation Properties
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 427
Titles
Example 9-2: Directivity of a Hertzian Dipole
4rr
JJ F(e,
f f sin3 e de d
9-2.4 Antenna Gain
= f ~ d = 2rr
F(e) = cos? e
Qp = JJ rio.
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 428
Titles
(dimensionless). (9.29) I
9-2.5 Radiation Resistance
c 3 x 1O~
47rR2 I57r/(~ (/)2 2 2 (1)2
I"" - 2
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 429
Titles
9-3 Half- Wave Dipole Antenna
,
~ ,/
1
/ = ..i12
L~-'/2
1
/= ).12
1
Images
Image 1
Image 2
Page 430
Titles
- ,
= Su . 1
Sma, = So
15/(?
9-3. I Directivity of ).,/2 Dipole
15/0//{COS[(7r/2)cose]}- .
( -JkR)
E!! = / dE!!.
£9 = j6010 (COS[(:i~~ COSO]} (e-~kR), (9.44a)
- £9
H9=-·
Images
Image 1
Image 2
Image 3
Page 431
Titles
I
T
).14
l
II
9-3.3 Quarter- Wave Monopole Antenna
9-3.2 Radiation Resistance of 'A/2 Dipole
Images
Image 1
Image 2
Page 432
Titles
,
,
,
9-4 Dipole of Arbitrary Length
Images
Image 1
Image 2
Tables
Table 1
Page 433
Titles
B = -- -- sm e z
X i: sin[k(l12 - z)] dz
+ J eJkZCOSOSin[k(l12+Z)ldzj.
see) = IEel2 = 15/J [cos (¥ cose) - cos (¥)]2
(c) /=3AI2
Images
Image 1
Image 2
Image 3
Image 4
Page 434
Titles
Technology Brief 17: Health Risks of EM Fields
Physiological Effects of EMFs
Images
Image 1
Image 2
Page 435
Titles
-
Bottom Line
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 436
Titles
E~
:;;: -€. 100
~ i 10
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Table 2
Page 437
Titles
Data
I
:q
I
Set Antenna Parameters
Images
Image 1
Image 2
Image 3
Image 4
Page 438
Titles
- ~
IEd- IEd-
9-5 Effective Area of a Receiving
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 439
Titles
R
9-6 Friis Transmission Formula
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 440
Titles
Pree = --- = ---------
Example 9·4: Satellite Communication System
10 =---~-
9-7 Radiation by Large-Aperture
Images
Image 1
Image 2
Page 441
Images
Image 1
Image 2
Image 3
Image 4
Page 442
Titles
442
----
----
----
Ya
I R ::! uP Il, (9.73) I
Images
Image 1
Page 443
Titles
E(R, e, ¢) =;: -R- u», ¢),
h(e)= I
sinor i, sin () / A)
= Eo . -L;
2Eo/\
~ 2Eolv
A
smc r = - .
S(R,e,¢)= ' .'1' 'I'
9-8 Rectangular Aperture with Uniform
Images
Image 1
Image 2
Image 3
Image 4
Page 444
Titles
444 CHAPTER 9 RADIATION AND ANTENNAS
9-8.1 Beamwidth
(9.87)
(9.80)
(9.85)
. A
smfh = 0.44 - .
Ix
nl, .
T SIn H2 = 1.39,
-I 30 I
Y = (lx/A) sin () -
I Pu = 2Ill " 2 sin 0, = 0.88/:
F(fJ) = S(R. e)
Smax
Images
Image 1
Image 2
Tables
Table 1
Page 445
Titles
9-8.2 Directivity and Effective Area
txt
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 446
Titles
9-9 Antenna Arrays
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 447
Titles
'r
447
l~. 1 I ~ 1
Se(R, 0, ¢) = -IEe(H. e, ¢lI" = --21.t~((1. ¢)I".
2r}o 2rJoR
(9.94)
(9.93)
Images
Image 1
Image 2
Page 448
Titles
= L Ai T !cW, cp),
Ej(Rj, e, cp) = Aj -- Ie(e, cp).
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 449
Titles
Q
id
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 450
Titles
450
~--)j2--~
y
x
ao= I
f
1
Figure 9-28: Two half-wave dipole array of Example 9-5.
2(T( T()
S(R,e)=SOFa(e)=4S0COS "2cose-4" .
II + ejxl2 = lejx/2(e-jx/2 + ejx/2)12
'. 71 [e-jx/2 + ejx/2112
= leJ~/21- 2 ---:----
= cos e' - - = 0
S(R,e) ?(n n)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 451
Titles
J
D
Images
Image 1
Image 2
Tables
Table 1
Page 452
Titles
-----<__.-+-- ...•.. -_ z (East)
d
~I
~--------~~---------'~z
Images
Image 1
Image 2
Image 3
Image 4
Page 453
Titles
9-10 N-ElementArray with Uniform
)..
. 2 (n )
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 454
Titles
=
= 11 + ejYl2,
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 455
Titles
9-10 N-ELEMENT ARRAY WITH UNIFORM PHASE DISTRIBUTION
z
455
Images
Image 1
Image 2
Image 3
Page 456
Titles
9-11 Electronic Scanning of Arrays
Images
Image 1
Image 2
Image 3
Image 4
Page 457
Titles
9-11.1 Uniform-Amplitude Excitation
z
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 458
Titles
(9.122)
9-1 1.2 Array Feeding
458
Images
Image 1
Image 2
Image 3
Image 4
Page 459
Titles
noup
Page 460
Titles
o 2noJr (/).f. ) (f - 10 GHZ)
Images
Image 1
Image 2
Page 461
Titles
/O.s
I(is
Images
Image 1
Image 2
Image 3
Page 462
Titles
Chapter 9 Relationships
).3D
Ae = -.-
Rrad ~ 73 Q
H¢=-
S(R, e) = 71' R2 sin2 e
H¢=-
S(R, e) = 20 2 sin2 e
x ).
i. y
D---"'--
.. 2nd
Images
Image 1
Image 2
Image 3
Page 463
Titles
CHAPTER HIGHLIGHTS
GLOSSARY OF IMPORTANT TERMS
Page 464
Titles
rt«. ¢) = { ~:
rte, ¢) = I
PROBLEMS
Images
Image 1
Image 2
Page 465
Titles
for 0 < z ::: 1/2,
fez) = { 100 - Zz] I),
Images
Image 1
Image 2
Image 3
Image 4
Page 466
Titles
I
1
I
I
----------- 5 km -----------1
I-d-I
(a) d = ),,/4,
Images
Image 1
Image 2
Image 3
Page 467
Titles
i!(N - j - I)!
Images
Image 1
Image 2
Tables
Table 1
Page 468
Titles
Satellite Communication Systems
10
R
E
T
p
A
H
c
Chapter Contents
Objectives
Images
Image 1
Image 2
Page 469
Titles
---.I!L.'--~ .""
Satellite Communication Systems
10-1
Application Examples
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 470
Titles
Ro
G --,- = Msw· Ro.
W
_ [GMeJ1!3
Images
Image 1
Image 2
Image 3
Page 471
Titles
10-2 Satellite Transponders
Images
Image 1
Tables
Table 1
Page 472
Titles
---------------------,
•...
g I~ --
~ I~----i
~ .
:;
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 473
Titles
~..n
~ ~~ '0 r:;
~ 'fJ,9'
10-3 Communication-Link Power
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 474
Titles
10-4 Antenna Beams
(10.9)
(10.8)
Pri = 1(8) r; = 1(8) PICICr (~)2
(10.11)
(10. I 2)
Images
Image 1
Image 2
Image 3
Image 4
Page 475
Titles
10-5 RADAR SENSORS
10-5 Radar Sensors
Images
Image 1
Image 2
Image 3
Page 476
Titles
10-5.1 Basic Operation of a Radar System
10-5.2 Unambiguous Range
Images
Image 1
Image 2
Image 3
Page 477
Titles
(to. 15)
2R) 2R/
--- ~ -- + r.
e c
----- R
J- - - - - - ~..,..
--
_-\----R~~-
.....•... -
10-5.3 Range and Angular Resolutions
/
2R
T=-,
I----r-I
cTp c
Ru= - = -. (10.14)
2 2/p
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 478
Titles
\ ---------1
==_-.-_-_l_-_- - - - RAx=fJR
J ---
----------
(
10-6 Target Detection
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 479
Titles
479
(10.24)
(10.22)
[ p.G2J...2a. JI/4
(10.21)
(10.18)
- - -
---
- -
---
- - -
---
---
r;
r.o»,
Prer = Stat = --2 (W). (10.20)
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 480
Titles
1.\
Ic=Tc+T«.
r:
10-7 Doppler Radar
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 481
Titles
10-8 Monopulse Radar
1 E3-
Images
Image 1
Image 2
Image 3
Page 482
Titles
(a)
1--------1
3--------'
4------ .
~ u
"",
-,
'\';
/
- - - -~-
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 483
Titles
~--
. efC: ;:~
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 484
Titles
41T2
Chapter 10 Relationships
2 2fp
_ Prj _ i(e) PtGtGr (_)..._)2
Sn- ------
Pni KTsysB 41T R
!:ix = {3R
P _ t t
r - (41T)3 R4
Ur 2u
fd = -2- = -- cos s
Page 485
Titles
CHAPTER HIGHLIGHTS
GLOSSARY OF IMPORTANT TERMS
PROBLEMS
Page 486
Page 487
Titles
and Abbreviations
x
I
D
N
A
E
p
p
A
Symbols, Quantities,Units,
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 488
Images
Image 1
Tables
Table 1
Page 489
Tables
Table 1
Page 490
Images
Image 1
Tables
Table 1
Page 491
Titles
A
p
p
E
N
D
I
x
B
Material Constants of Some
Common Materials
Images
Image 1
Image 2
Tables
Table 1
Page 492
Titles
MATERIAL CONSTANTS OF SOME COMMON MATERIALS
APPENDIX B
492
Images
Image 1
Tables
Table 1
Table 2
Page 493
Titles
Mathematical Formulas
x
I
D
E N
C
p
p
A
. (x + V) (x - v)
(X + v) (x - y)
Trigonometric Relations
Images
Image 1
Image 2
Image 3
Page 494
Titles
cos x = 1 - - + - + ... :::: 1 - -
Images
Image 1
Page 495
Titles
x
I
D
N
D
E
p
A P
Answers to Selected Problems
1.3 A = 10 cm
Chapter 1
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 496
Titles
Chapter 2
2.37 I = )..14 + 11)..12
Chapter 3
• IA(l. -1. 2)1 Y
Page 497
Titles
c
Chapter 4
Images
Image 1
Page 498
Titles
Chapter 5
Chapter 6
Chapter 7
Images
Image 1
Image 2
Page 499
Titles
Chapter 8
Chapter 9
Images
Image 1
Page 500
Titles
Chapter 10
Images
Image 1
Page 501
Images
Image 1
Page 502
Images
Image 1
Page 503
Titles
A
503
Images
Image 1
Page 504
Titles
504
B
c
INDEX
Images
Image 1
Page 505
Titles
INDEX
o
E
505
Images
Image 1
Page 506
Titles
506
F
INDEX
Page 507
Titles
G
H
J
507
Images
Image 1
Page 508
Titles
508
K
L
M
INDEX
Images
Image 1
Page 509
Titles
INDEX
N
o
p
509
Images
Image 1
Page 510
Titles
510
Q
A
s
INDEX
Images
Image 1
Image 2
Page 511
Titles
INDEX
T
511
Images
Image 1
Page 512
Titles
512
u
v
w
x
z
Page 513
Titles
.•.
Images
Image 1
FUNDAMENTAL CONSTANT PHYSICAL SYMBOL CONSTANTS VALUE speed of light in vacuum gravitational constant Boltzmann's constant elementary charge permittivity of free space permeability of free space electron mass proton mass Planck's constant intrinsic impedance of free space c G K e EO /-to me mp h r]() 2.998 x 108 ~ 3 x 108 m/s 6.67 x 10-11 N·m2/kg2 1.38 x 10-23 J/K 1.60 x 10-19 C 8.85 x 10-12::::: 3JJr x 10-9 F/m 4n x 10-7 Him 9.11 x 10-31 kg 1.67 x 10-27 kg 6.63 x 10-34 J·s 376.7 ~ 120n n MAXWELL'S EQUATIONS Gauss's law Faraday's law Gauss's law for magnetism Ampere's law V·D = a; aB VxE=-- at an VxH=J+- at SYMBOL MAGNITUDE & SUBMULTIPLE PREFIX PREFIXES SYMBOL MAGNITUDE MULTIPLE PREFIX exa peta tera giga mega kilo E P T G M k 1018 1015 1012 109 106 103 milli micro nano pico femto atto m J1 n P f a 10-3 10-6 10-9 10-12 10-15 10-18
W hen this book in draft form, each student was asked to write a brief statement describing his or her understanding of what role electromagnetics plays in science, technology, and society. The following statement, submitted by Mr. Schaldenbrand, was selected for inclusion here: Electromagnetics has done more than just help science. Since we have such advanced communications, our understanding of other nations and nationalities has increased exponentially. This understanding has led and will lead the governments of the world to work towards global peace. The more knowledge we have about different cultures, the less foreign these cultures will seem. A global kinship will result, and the by-product will be harmony. Understanding is the first step, and communication is the means. Electromagnetics holds the key to this communication, and therefore is an important subject for not only science, but also the sake of humanity. Mike Schaldenbrand, 1994 The University of Michigan
SOME USEFUL VECTOR IDENTITIES A . B = A B cos eA B A x B = nAB sin8AB Scalar (or dot) product Vector (or cross) product. it normal to plane containing A and B A . (B x C) = B . (C x A) = C . (A x B) A x (B x C) = B(A . C) - C(A x B) V(U + V) = VU + VV VevV) = UVV + VVU v . (A + B) = V . A + V . B V . evA) = UV· A + A· VU V x (U A) = UV x A + VU x A V x (A + B) = V x A + V x B V· (A x B) = B· (V x A) - A . (V x B) V . (V x A) = 0 VxVV=O V x V x A = V(V . A) - V2A (V . A) dv = fA. 5 ds (V x A) . ds = fA. c dl / V / s Divergence theorem (s encloses V) Stukes's theorem (S bounded by C)
FUNDAMENTALS OF APPLIED ELECTROMAGNETICS 6/e Fawwaz T. Ulaby University of Michigan, Ann Arbor Eric Michielssen University of Michigan, Ann Arbor Urn bertoRavaioli University of Illinois, Urbana-Champaign PEARSON Upper Saddle River Cape Town . Dubai . Toronto Delhi· Mexico City· Sao Paulo· Sydney. Hong Kong. Seoul· Singapore· Taipei· Tokyo . Milan . Munich . Paris . Columbus . Madrid . Boston . London . San Francisco . New York . Amsterdam . Montreal
Preface to 6/e line circuits; generate analyze allow the user to interactively Building on the core content and style of its predecessor, this sixth edition (6/e) of Applied Electromagnetics introduces to help students develop a deeper new features designed understandi ng of electromagnetic concepts and appl ications. Prominent among them is a set of 42 CD simulation modules that and design transrnission spatial patterns of the electric and magnetic fields induced by charges and currents; visualize in 2-D and 3-D space how the gradient, divergence, and curl operate on spatial functions; observe the temporal and spatial waveforms of plane waves propagating in loss less and lossy media; calculate inside and generate radiation patterns for a rectangular waveguide; linear antennas These are valuable learning tools; we encourage students to use them and urge instructors to incorporate them into their lecture materials and homework assignments. and display field distributions and parabolic dishes. Additionally, by printing this new edition in full color, graphs and illustrations now more efficiently convey core concepts, and by expanding the scope of topics of the Technology Briefs, fundamentals and additional bridges between electromagnetic their counLless engineering and scientific applications are established. In summary: New to this edition • A set of 42 CD-interactive simulation modules • New/updated Technology Briefs • Full-color figures and images • New/updated end-of-chapter problems • Updated bibliography Acknowledgments As authors, we were blessed to have worked on this book with the best team of professionals: Richard Carnes, Leland Pierce, Janice Richards, Rose Kernan, and Paul Mailhot. We are exceedingly grateful for their superb support and unwavering dedication to the project. We enjoyed working on this book. We hope you enjoy learning from it. FAWWAZ T. ULABY ERIC MICHIELSSEN UMBERTO RAVAIOLJ
6 PREFACE Excerpts From the Preface to the Fifth Edition CONTENT The book begins by building a bridge between what should be to a third-year electrical engineering student and the familiar (EM) material covered in the book. Prior electromagnetics student will have to enrolling in an EM course. taken one or more courses He or she should be familiar with circuit analysis, Ohm's law, Kirchhoff's current and voltage laws, and related topics. Transmission lines constitute circuits and e1ectromagnetics. Without having to deal with vectors to or a natural bridge between electric already familiar the student in circuits. a typical concepts fields, uses impedance matching, the reflection and transmission learn about wave motion, of power, phasors. and many of the properties of wave propagation in a guided structure. All of these newly learned concepts will prove invaluable later (in Chapters 7 through 9) and will facilitate the learning of how plane waves propagate in free space and in material media. Transmission lines are covered in Chapter 2, which is preceded I with reviews of complex numbers and phasor in Chapter analysis. The next part of the book, contained in Chapters 3 through 5, covers vector analysis, electrostatics, and magnetostatics. The electrostatics chapter begins with Maxwell's equations for the time-varying case, which are then specialized to electrostatics thereby providing the student with an and magnetostatics, Suggested Syllabi Two-Semester Syllabus 6 credits (42 contact hours per semester) Hours 4 Sections All One-Semester 4 credits (56 contact hours) Syllabus Sections All Hours 4 2-1 to 2-8 and 2-11 All 4-1 to 4-10 5-1 to 5-5 and 5-7 to 5-8 6-1 to 6-3, and 6-6 7-1 to 7-4, and 7-6 8-1 to 8-3, and 8-6 9-1 to 9-6 None Total 12 8 8 7 3 42 6 7 9 10 5 3 40 2 8 8 6 5 2 3 6 7 6 - I 56 0 1 Chapter Introduction: Waves and Phasors Transmission Lines 2 3 Vector Analysis 4 5 Magnetostatics Electrostatics All All All All Exams Total for first semester 6 Maxwell's Equations for Time-Varying Fields Plane-wave Propagation 7 8 Wave Reflection and Transmission Radiation and Antennas Satellite Communication Systems and Radar Sensors Exams 9 10 All All All All All Extra Hours Total for second semester
PREFACE 7 fields and sets 6 deals with time-varying the in Chapters 7 through 9. Chapter 7 stage for the material covers plane-wave propagation in dielectric and conducting media, and Chapter 8 covers reflection and transmission at discontinuous to fiber optics, waveguides and resonators. and introduces the student boundaries overall framework for what her why electrostatics and magnetostatics the more general time-varying case. is to come and showing him or are special cases of Chapter In Chapter 9, the student is introduced to the principles of radiation by currents flowing in wires, such as dipoles, as well as ~oradiation by apertures, such as a horn antenna or an opening in an opaque screen illuminated by a light source. in today's technological To give the student a taste ofthe wide-ranging applications of electromagnetics society, Chapter 10 concludes the book with overview presentations of two system satellite communication systems and radar sensors. examples: in this book was written for a two-semester it is possible to trim it down to four-credit course. The for each of these two sequence of six credits, but generate a syllabus for a one-semester accompanying syllabi options. table provides The material MESSAGE TO THE STUDENT interactive CD-ROM accompanying this book was The developed with you, the student, in mind. Take the time to use it in conjunction with the material in the textbook. The multiple- window feature of electronic displays makes it possible to design interactive modules with "help" buttons to guide the student through the solution of a problem when needed. Video animations can show you how fields and waves propagate in time and space, how the beam of an antenna array can be made to scan electronically, and examples of how current is induced in a circuit under the influence of a changing magnetic field. The CD-ROM is a useful resource for self-study. Use it! ACKNOWLEDGMENTS looking and esthetically My sincere gratitude goes to Roger DeRoo, Richard Carnes and I am indebted to Roger DeRoo for his painstaking Jim Ryan. review of several drafts of the manuscript. Richard Carnes is unquestionably the best technical typist I have ever worked with; his mastery of IbTEX,coupled with his attention to detail, made it possible to arrange the material in a clear and smooth format. The artwork was done by Jim Ryan, who skillfully transformed my rough sketches into drawings that are both professional I am also pleasing. grateful to the following graduate students for reading through parts or all of the manuscript and for helping me with the solutions manual: Bryan Hauck, Yanni Kouskoulas, and Paul Siqueira. Special thanks are due to the reviewers for their valuable comments and suggestions. They include Constantine Balanis of Arizona State University, Harold Mott of the University of Alabama. David Pozar ofthe University of Massachusetts, S. N. Prasad of Bradley University, Robert Bond of New Mexico Institute of Technology, Mark Robinson of the University of Colorado at Colorado Springs, and Raj Mittra of the University I appreciate the dedicated efforts of the staff at of Illinois. Prentice Hall and I am grateful for their help in shepherding through the publication process in a very timely this project manner. l also would like to thank Mr. Ralph Pescatore for copy-editing the manuscript. FAWWAZ T ULAllY
分享到:
收藏