Page 1
Images
Image 1
Page 2
Images
Image 1
Tables
Table 1
Table 2
Page 3
Images
Image 1
Image 2
Page 4
Titles
A x (B x C) = B(A . C) - C(A x B) 
A . (B x C) = B . (C x A) = C . (A x B) 
SOME USEFUL VECTOR IDENTITIES 
A . B = A B cos e A B 
V(U + V) = VU + VV 
VevV) = UVV + VVU 
v . (A + B) = V . A + V . B 
V . evA) = UV· A + A· VU 
V x (U A) = UV x A + VU x A 
V x (A + B) = V x A + V x B 
V· (A x B) = B· (V x A) - A . (V x B) 
V . (V x A) = 0 
VxVV=O 
V x V x A = V(V . A) - V2A 
/ (V . A) dv = fA. ds 
/ (V x A) . ds = fA. dl 
s c 
Images
Image 1
Image 2
Page 5
Titles
FUNDAMENTALS OF 
APPLIED 
ELECTROMAGNETICS 
6/e 
Fawwaz T. Ulaby 
Eric Michielssen 
Urn bertoRavaioli 
PEARSON 
Images
Image 1
Image 2
Page 6
Titles
Preface to 6/e 
Images
Image 1
Image 2
Image 3
Page 7
Titles
Excerpts From the Preface to the Fifth 
CONTENT 
Suggested Syllabi 
Tables
Table 1
Page 8
Page 9
Titles
List of Technology Briefs 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 10
Titles
Contents 
Images
Image 1
Image 2
Tables
Table 1
Page 11
Tables
Table 1
Page 12
Tables
Table 1
Page 13
Tables
Table 1
Page 14
Images
Image 1
Image 2
Page 15
Titles
Introduction: Waves and Phasors 
Objectives 
R 
E 
T 
p 
1 
A 
H 
c 
Chapter Contents 
Images
Image 1
Image 2
Page 16
Titles
16 
Overview 
Images
Image 1
Page 17
Titles
1-1 Historical Timeline 
1-1.1 EM in the Classical Era 
1-1.2 EM in the Modem Era 
Images
Image 1
Page 18
Titles
18 
CHAPTER I INTRODUCTION: \V/\vES Al\D PHASORS 
Radar 
Electromagnetic sensors 
Global Positioning System (GPS) 
Cell 
);i_:::--. 
~_::"'rl-=.-' 
~---~-----~ 
Telecommun ication 
Ultrasound transducer 
Ablation catheter 
Liver 
Ultrasound 
Microwave ablation for 
Images
Image 1
Image 2
Image 3
Page 19
Titles
19 
1-2 Dimensions, Units, and Notation 
E=xE, 
Images
Image 1
Image 2
Tables
Table 1
Table 2
Page 20
Titles
Chronology 1-1: TIMELINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA 
1752 
1733 
1745 
1671 
Electromagnetics in the Classical Era 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 21
Titles
21 
Gauss' Law for Electricity ; 
Electromagnetics in the Classical Era 
Chronology ir: TIME LINE FOR ELECTROMAGNETICS IN THE CLASSICAL ERA (contrnuedl 
1-2 DIMENSIONS, UNITS, AND NOTATION 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 22
Titles
22 
CHAPTER I INTRODUCTION: WAVES AND PHASORS 
Telecommunications 
ON~ ~~~N~"'~:~G~~~. ~A. 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 23
Titles
\-2 DIMENSIONS. UNITS, AND NOTATION 
Telecommunications 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 24
Titles
24 
CHAPTER 1 INTRODUCTION: WAVES AND PHASORS 
Chronology 1-3: TIMELINE FOR COMPUTER TECHNOLOGY 
Computer Technology 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 25
Titles
25 
~~:'~~'~~~rE~ ~~! 
Computer Technology 
1-2 DIMENSIONS. UNITS. AND NOTATION 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 26
Titles
1- 3 The Nature of Electromagnetism 
The force of gravitation acts at a distance. 
1-3.1 The Gravitational Force: A Useful 
" t I 
\ t I -~ 
"" \!; " 
----~e~ -- 
, , 
It' 
Images
Image 1
Image 2
Image 3
Page 27
Titles
(1.7) 
1-3.2 Electric Fields 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 28
Titles
+ 
" t /1 ~ 
", \t/ /x 
'8/ 
I ~ \ 
, " 
Images
Image 1
Image 2
Page 29
Titles
1-3.3 Magnetic Fields 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 30
Titles
(Him). 
1-3.4 Static and Dynamic Fields 
JiiOiO 
Images
Image 1
Image 2
Image 3
Image 4
Page 31
Images
Image 1
Page 32
Titles
o 
1-4 Traveling Waves 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 33
Titles
I 
4>(x,t)= T-T+4>o 
\ 
1-4.1 Sinusoidal Waves in a Lossless Medium 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 34
Titles
IP 
y(x. t) = Yo = A cos T - T ' 
y(x, T12) 
y(x, T14) 
-A 
T A 
y(x, 0) 
(1.20) 
y(x.t) = A cos T - T 
y(x, 0) 
Images
Image 1
Image 2
Image 3
Image 4
Page 35
Titles
co 
----=0 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 36
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 37
Titles
Sinusoidal Waves in a Lossy Medium 
Images
Image 1
Image 2
Page 38
Titles
f 
(21T: 21T: ) 
---~ 
-- 
--- 
y(x) 
Example 1-1: Sound Wave in Water 
Images
Image 1
Image 2
Image 3
Page 39
Titles
Example 1-2: Power Loss 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 40
Titles
a '-- , 'II 
1-5 The Electromagnetic Spectrum 
Images
Image 1
Image 2
Image 3
Image 4
Page 41
Titles
41 
(1.35) 
y = Jm(z). 
x = 9'te(z). 
1-6 Review of Complex Numbers 
o 
Images
Image 1
Image 2
Tables
Table 1
Table 2
Page 42
Titles
CHt\PTER I INTRODUCTION: WAVES AND PHASORS 
RADIO SERVICES COLOR LEGEND 
a I I'!I I H' a I I a~ I: I, ::~ : 
I I I In I ~II I I, 
FREQUENCY 
, II I III 'I I! ! I II ~: I ill II l 1 __ 
, 'I 
HF 
MF 
VLF 
VHF 
UNITED 
-+2 
UHF 
••• ' • r I I I!' • 1 liD I • I ' 
• : ' 01 D "I, ~. II I i I " • n 
' • • . 'I f'" I ' '~ : , t:I ,I I " 
SHF 
i . ~~! R I :fri II lui n ~ ~ 
, . W.h I n M , ,.0 U ! II III U t1J In 
" ' ,,' ~: - D ' 
1 • ~. ~.I '. , ; 
EHF 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 43
Titles
( 1.44) 
(1.46) 
( 1.48a) 
( 1.47a) 
( 1.48b) 
( 1.47b) 
ILl I 
Izzi - - 
Multiplication: 
liZ! = tfZ"i*,. (1.43) I 
43 
Division: For Z2 I- 0, 
~ ~ 
Xi +)'2' 
Addition: 
( 1.37) 
(1.39) 
(lAO) 
(1.42) 
x = [z] cos () 
[z] =tj x2 + y2 
y = IzlsmB, 
e = tan-I (y/x). 
y 
Jm(z) 
x = Izlcose, 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 44
Titles
Technology Brief 1: LED Lighting 
Light Sources 
Images
Image 1
Image 2
Image 3
Page 45
Titles
, argon, and xenon) at very low pressure, the electrons collide with the mercury atoms, causing them to excite 
v;- 
·E 75 
'" 
Images
Image 1
Image 2
Image 3
Page 46
Titles
+ 
v 
Page 47
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 48
Titles
Solution: 
Jm 
0.54 ) 
v = 3 - j4, 
-1 = ejrr = e - jit = 1 L!.!!!r'. , 
v'2 
Example 1~3: Working with Complex Numbers 
C a) IV I = \i"V"V* 
Useful Relations: 
Images
Image 1
Image 2
Image 3
Page 49
Titles
1-7 Review of Phasors 
Images
Image 1
Image 2
Image 3
Image 4
Page 50
Titles
R 
c 
- = - IJtc(leiUJT) =IRc -(leilO/) 
1-7.1 Solution Procedure 
=IReC~ ejW). (1.63) 
Jm{[(R+ j~c)T-v,]ej(ot}=o. 
= lJte [V,ejw/ J, ( 1.59) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 51
Titles
0.70) 
L = 0.2 mH 
(V). 
....!.... Aej (¢O-IT /2) 
i R= 6 Q 
-- 
Example 1-4: RL Circuit 
i (t) = I)tc [i ejwt ] 
\/1 + w2R2C2 
VowC 
+ cos(wt + 1>0 - 1>1). 
\/1 + w2 R2C2 
o 1+ jwRC 
\/1 + w2 R2C2 eNI 
~1 + w2R2C2 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 52
Titles
Answer: (a) I = 150/(R + jwL) = 0.3/-36.9° (A), (b) 
(1.73) 
(1.72) 
(1.71 ) 
(V). 
di 
Vs (t) = 5 sin (4 x 104 t ~ 30°) 
6 + j4 x 104 x 2 x 10-4 
( 1.74) 
=--- 
6 + j8 
- - 
Images
Image 1
Image 2
Page 53
Titles
The PV Cell 
Technology Brief 2: Solar Cells 
Images
Image 1
Image 2
Page 54
Titles
Modules, Arrays, and Systems 
Images
Image 1
Image 2
Image 3
Page 55
Titles
11- 
"ZX 
--- 
l1li 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 56
Titles
Chapter 1 Relationships 
B=.~ 
E=R q 
CHAPTER HIGHLIGHTS 
Images
Image 1
Image 2
Image 3
Page 57
Titles
GLOSSARY OF IMPORTANT TERMS 
PROBLEMS 
* 
Images
Image 1
Page 58
Titles
'---~-x 
X=o 
Images
Image 1
Page 59
Titles
(V) 
(a) 1/1.' 
(b) z3 
(d) Jm{z} 
(e) Jm{z*} 
Z) = 51-60° • 
(a) zi = 2 + j3 and Z2 = I - j2 
(b) Zl = 3 and Z2 = - j3 
Z) = -3 + j2, 
7.1 = 3 - j2, 
(e) Z5 = r' 
Images
Image 1
Image 2
Page 60
Titles
L 
i 
-- 
Images
Image 1
Image 2
Image 3
Image 4
Page 61
Titles
Transmission Lines 
R 
E 
T 
Objectives 
p 
2 
A 
H 
c 
Chapter Contents 
Images
Image 1
Image 2
Page 62
Titles
B 
+ 
t 
l 
Load circuit 
1------1 
B 
Receiving-end 
Transmission line 
A' 
+ 
t 
l 
2-1.1 The Role of Wavelength 
Transmission line 
Sending-end 
Generator circuit 
,----------1 
2-1 General Considerations 
Images
Image 1
Image 2
Image 3
Image 4
Page 63
Titles
- JUUl 
(m/s). 
- JVlJ'L 
JUUl- 
JUUl- 
JUUl- 
V,"A' = Vg(t) = Vo cos tot 
Images
Image 1
Image 2
Page 64
Titles
M 
TEM Transmission Lines 
M 
Higher-Order Transmission Lines 
2-1.2 Propagation Modes 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 65
Titles
2-2 Lumped-Element Model 
Images
Image 1
Image 2
Image 3
Image 4
Page 66
Titles
R' /),z L' /),z 
C'/),z 
--------/),z-------- 
--------/),z-------- 
--------/),z-------- 
--------/),z-------- 
• Two-wire line [Fig. 2-4(17)1: 
Images
Image 1
Page 67
Titles
, n, (I I) 
R =- -+- 
Images
Image 1
Image 2
Tables
Table 1
Page 68
Titles
_J¥fIIC 
I /1 (b) 
(Him). 
G'=O, 
(F/m). 
(S/m). 
Images
Image 1
Image 2
Page 69
Titles
---------Ac-------. 
dV(z) , , - 
--- = (R + jwL) I(z), 
ai(z, t) G' ( ) C ,au(z, t) 
----az- = U z,t + at' 
iV. t) - c' s» u(z + I1z. t) 
- - 
These are the telegrapher's equations ill phasor form. 
di(z) , , - 
--;;;- = (G + jWC ) V(z). (2. I 8b) 
~-.~--------~--~+ 
, ili(7.t) 
aU(z,t) R"( ) L,ai(z,t) 
- = 'zt+ --- 
az . , at' 
1 
0<[' t) 
Node 
+ - 
- = R t{z. t) + L --- . 
2-3 Transmission-Line Equations 
Images
Image 1
Image 2
Image 3
Page 70
Titles
I--z 
--- = (R + JwL )-- . 
dz2 dz 
--2- - (R' + jwL')(G' + jwC') V(z) = 0, (2.20) 
dz 
2-4 Wave Propagation on a Transmission 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 71
Titles
v.+ I v.+ I j¢+ 
11- IV.-I N- 
y+ -v; 
~ = Zo = __ 0_. 
o 0 
Images
Image 1
Image 2
Image 3
Page 72
Titles
c,=L 
_ r;;;;u _ fL' 
up = fA = ~ . 
L' = Z5C' 
Example 2-1: Air Line 
Images
Image 1
Page 73
Titles
CT e = 5.797E7 [Slm] 
Two-Wire Line 
Module 2.1 
output 
Structure Data 
D = 8.793 
R < = 2.952465 
Rangel L.:I ~~~~~~~~~i...:...J~ I 
Rangel 1 ••.. ~--"- ••...•.•••••..•••••• -""' ••.•...• ~~~ .......•.......• ~ 1 
[ Hz} 
Input 
I 
A=0.1978 [m] 
[Np/m] 
Images
Image 1
Image 2
Page 74
Titles
2b 
Coaxial Cable 
Module 2.2 
I· ~ 1 
G {S/m] 
I 
Output 
Structure Data 
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 75
Titles
2-5 The Lossless Microstrip Line 
up = --. 
Fr 
Images
Image 1
Image 2
Image 3
Image 4
Page 76
Titles
t = CO.~,67r·75 
lip = --. 
~ 
e r +l (sr-I)( IO)-Xr 
Scff = -- + -- I + - 
C' = J€ctI 
[cr - 0.9 ]0.05 
e, + 3 
ZO = -- n + 1 + - . 
J€ctI S .1'2 
f3 = -ftclr . 
Images
Image 1
Tables
Table 1
Page 77
Titles
z, (fr-I)( 0.12) 
= /9 + 1 x 50 + (9 - I) (0.23 + 0.12) 
2 ~ 9+1 9 
8eP 
Example 2-2: Microstrip Line 
60n2 
h e2p -2 ' 
+ -- In(q - I) + 0.29 - - 
Images
Image 1
Image 2
Image 3
Image 4
Page 78
Titles
output 
Rangel ,L..--""' •..•••••. ..........:.~ ......•••........•••........•••.........••.•.......••.• ~;",.,J, 
Rangel •.•• 14--""'-= .••••.........••••• == ~ ~ 1 
Input 
Images
Image 1
Image 2
Page 79
Titles
I lIe 
up= =---. -=- 
Up ciAo 
A = - = - - = - , (2.53) 
f f.,fEr .,fEr 
(2.49) 
(lossless line), 
(lossless line). (2.45) 
(lossless line), (2.46) 
A _ 2rr _ 2rr 
- f3 - wJL'C' . 
lip = 73 = JL'C" 
1 
up = -- (m/s), 
~ 
y = ex + jf3 = jwJ L'C I • 
a=O 
fJ = wJuc I 
2-6 The Lossless Transmission Line: 
General Considerations 
Images
Image 1
Image 2
Image 3
Page 80
Titles
z=O 
d=O 
I 
d=! 
d~r---------------~ 
2-6.1 Voltage Reflection Coefficient 
(2.55) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 81
Titles
81 
t: v- 
lip = c] Fr Zo = (1201 Fr) 
ZL 
= ZL + 1 (dimensionless), (2.59) 
r = Vo- = ZL - Zo 
ZL/Zo-l 
= 
V- = (ZL - zo) V+. 
o ZL + Zo 0 
Images
Image 1
Image 2
Image 3
Page 82
Titles
= 
= 
A' 
Images
Image 1
Image 2
Image 3
Image 4
Page 83
Titles
83 
r -I r + I 
~ [2 ] 1/2 
Reflection Coefficient r = WlejOr 
nzo 
..:::.....:::0 ) = we 
. [(Vo+)*CeitJz + Ifie-j&ee-j/lZ)]}'/2 
2-6.2 Standing Waves 
Images
Image 1
Image 2
Image 3
Page 84
Titles
o 
"4 
2 
IVcd)1 
d------------------------~IVol 
o 
I A/2 I IV(d)1 
4 2 "4 
0.2 
14 '2 '"4 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Table 2
Page 85
Titles
(2.72) 
(dimensionless), 
d . _ { dmax + ')./4, if dmax < ')./4, 
s=~= l+lfI 
IVlrnin 1 - Ifl 
{ n = 1,2, . 
n = 0,1, 2, . 
d _ Br + 2mr _ OrA nA 
max - 2{3 - 4;71" + 2 ' 
if Or < 0, 
Images
Image 1
Image 2
Page 86
Titles
Options: Set Input I Output 
Transmission Une Data 1 
output 
(; Impedance r Admillance 
I Update II 
Transmission Line Simulator 
Length units: a (i. J 
Low Loss Approximation 
_ul.u 
,. 
',~::~1r\ /\~' 
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Table 2
Page 87
Titles
87 
Zo=50Q, 
A = 2 x 0.3 = 0.6 m, 
5-1 
= 2 x - x 0.12 - tt 
= -0.2n (rad) 
2n 2n IOn 
13----- 
(2 + j 1) - I 
= 
s=~ 
Example 2-6: Measuring ZJ> 
Example 2-5: Standing-Wave Ratio 
Images
Image 1
Image 2
Page 88
Titles
[I + r,] 
I-r, 
[I + r] 
ZL=ZO -- 
I-r 
2- 7 Wave Impedance of the Lossless Line 
Images
Image 1
Page 89
Titles
Load 
Z=O 
Zo 
Transmission line 
1-------- 
z =-1 
* 
Generator 
Example 2-7: Complete Solution for v(z, t) 
In 0 RI' 'RI 
l+iZLtanPI' (2.79) 
z, + z., 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Tables
Table 1
Page 90
Titles
I 
+ (VgZin) ( 1 ) 
Vo = z, + z., e1fJi + re-jfJi 
ZL - Zo 
r=~- 
z., = Zo ( 1 + ri) 
I-ri 
v(d, t) = 9ie[V(d) eiwt] 
Images
Image 1
Page 91
Titles
Wave and 
Module 2.5 
Images
Image 1
Image 2
Page 92
Titles
Technology Brief 3: Microwave Ovens 
Microwave Absorption 
II~:: 
Images
Image 1
Image 2
Tables
Table 1
Page 93
Titles
I 
Oven Operation 
Images
Image 1
Image 2
Image 3
Image 4
Page 94
Titles
(2.86) 
, : 
CHAPTER 2 TRANSMISSION LINES 
jwLeq = j Zo tan (if, 
Zf;: - z, ~:,~ 
d-4------------------------~1 
o 
V,dd) = Vo+lej/Jd - e-ifi"j = 2jVo+ sinf3d, 
- VO+'f'< I 'fJd 2Vo+ 
/scCd) = ~[eJ'" + e-} ] = -- cosf3d. 
Zo Zo 
. V,dd) . 
Denoting Zr.~ as the input impedance of a short-circuited 
2-8.1 Short-Circuited Line 
zst _V')C(I) -' Z· ta .f31 (2,.84.) 
ill -lsc(l) - Joan· ,. 
2-8 Special Cases of the Lossless Line 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 95
Titles
zli - = 7< ] ~~~~;t 
* 
sc ~z __ l_ 
1 -I (WLcq) 
1 
Images
Image 1
Page 96
Titles
I 
z~c_ 
l--+---~~---+----~----+ 
d--~--~r----#----~----~ 
d~+-------------------~ 
Z~ = -_-- = -JZocotfjI. (2.93) 
\loc(d) = Vo+[ej,8d + e-j,8d] = lVo+ cosf3d, 
- v+ ljV.+ 
Zo z, 
2-8.3 Application of Short-Circuit! Open-Circuit 
2-8.2 Open-Circuited Line 
by d--+---~r----+----~----+ 
96 
~ 
(2.95) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Image 11
Page 97
Titles
for I = )../4 + n)../2. (2.97) 
Z2 
o------OA' 
1---).14--- 
Example 2-10: 1./4 Transformer 
forI = n)../2, 
Quarter- Wavelength Transformer 
Lines of Length' = nA/2 
Example 2-9: Measuring Zo and fJ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 98
Titles
98 
2-8.6 Matched Transmission Line: ZL = Zo 
Images
Image 1
Tables
Table 1
Page 99
Titles
2-9.1 Instantaneous Power 
\Y.+ I 
Answer: I = 5.68 cm. (See -e-) 
Review Question 2-11: What is a quarter-wave 
2-9 Power Flow on a Lossless 
Images
Image 1
Page 100
Titles
. I!. w ! 
1\1:+12 
2-9.2 Time-Average Power 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 101
Titles
If') (27rt ) 1 
T cos- T + tJd + ¢ dt = 2" . 
o 
Review Question 2-18: Verify that 
2-10 The Smith Chart 
1 
1 
IV.+I' 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 102
Titles
Open-circuit 
f· 
fr = [I"] cos8r• 
Short-circuit 
2-10.1 Parametric Equations 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 103
Titles
( 1)2 (1)2 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 104
Titles
r· 
Images
Image 1
Image 2
Page 105
Titles
Wave Impedance 
=.9ZL~2-jl 
I+r 
Zed) 1+ r" 
zed) = -- = -- , 
z, 1 - r" 
Images
Image 1
Image 2
Page 106
Titles
2-10.3 SWR, Voltage Maxima and Minima 
s = 1+ Ifl . 
4. - I 
Page 107
Images
Image 1
Image 2
Image 3
Page 108
Titles
, 'd' 
Images
Image 1
Image 2
Image 3
Page 109
Titles
2-10.4 Impedance to Admittance Transformations 
Y Zo 
v=-=-=-. 
I + r «: j;r I - r 
z(d = ";./4) = - -- - YL 
1 1- r 
YL=-=-- 
ZL l+r 
Y = G + jB 
Z = R + jX 
R 
-X 
B = ----,,------,,- 
R2 + X2 
G 
g = - = GZo 
B 
h= - = BZo 
1 R - jX 
Z R + jX R2 + X2 
Y G B 
v= - = -+j- =g+jb 
Images
Image 1
Page 110
Titles
110 
Images
Image 1
Image 2
Page 111
Titles
THE SMITH CHART 
Location 
.,.. 
O.135A 
III 
Location 
1-3.3).-1 
"';1 i :9'L ~ 05 + jl 
, 'd, 
Images
Image 1
Image 2
Page 112
Titles
Zin = 0.28 - jOo4O, 
ZL = 0.6 - jO.8. 
Page 113
Images
Image 1
Image 2
Page 114
Titles
114 
ry 
z, = SO.O In] 
2-11 
Impedance Matching 
Images
Image 1
Page 115
Titles
Yin = (Cd + jBd) + js, 
2-11.1 Lumped-Element Matching 
M' 
M 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 116
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Image 11
Image 12
Image 13
Page 117
Titles
( I - IfleFi') (I + Ifle-jR') 
Yd= 1+lflejO' 1+lfle-jW 
h'l = -----,,--..,----- 
Images
Image 1
Image 2
Image 3
Page 118
Titles
Yo 
YdJ 
I 
Yo 
A 
1 
Images
Image 1
Image 2
Image 3
Page 119
Titles
o.usz 
1 + jO = )'s + 1 + j 1.58, 
Ys = - jl.58. 
)'d = 1 - j1.58, 
Images
Image 1
Image 2
Page 120
Titles
120 
2-11.2 Single-Stub Matching 
Images
Image 1
Image 2
Page 121
Titles
and Y'l = } b.'I = - j 1.58, 
(2) d: = 0.20n. 
M 
MI---d--- 
Yo 
Example 2-14: Single-Stub Matching 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 122
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 123
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 124
Titles
124 
2-12 Transients on Transmission Lines 
Images
Image 1
Image 2
Image 3
Page 125
Titles
z=/ 
z=O 
V(t) 
VI (t) = Vo u( t) 
Voi--------------- 
~_ Transmission line 
Vgi ~ Zo ]Rt 
1--------1-- 
Vet) 
r 
U(X)={:) 
vor-- ....• 
2-12.1 Transient Response 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 126
Titles
(1/2::: Z S I). (2. 154b) 
II = -rd~, 
(0 s z < 1/2), 
I) = ----"- 
I 2 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 127
Titles
2-12.2 Bounce Diagrams 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 128
Titles
3T 
T 
3114 
I 
r+-r, 
1(1/4,4T) 
T 
3T 
3114 
V 
114 
r=[L 
V(l14,4T) 
128 
(1 + r L + r, r L)Vt \ 
V(l14, t) 
vt 
T 
T 
7T 2T 9T 
4 4 
3T 
15T 4T 17T 
4 4 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 129
Titles
0.54 V 
rL = = -----,- = 0.5. 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 130
Titles
V]- = frVt = -3 Y, 
Fr J2.f 
° 
V(O, t) 
-3 
Ri: - Zo 
I I I 
-=-+- 
Ru Rr Zo' 
Images
Image 1
Image 2
Image 3
Page 131
Titles
Microwave Ablation 
Technology Brief 4: EM Cancer Zappers 
Images
Image 1
Image 2
Image 3
Page 132
Titles
High-Power Nanosecond Pulses 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 133
Titles
133 
~~ 
VI = --"--- 
V 00 = --"--- 
Rg-ZO 
RL -ZO 
(Np/m) 
en) 
= 
Chapter 2 Relationships 
G' a 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 134
Titles
ru 
s=-- 
Images
Image 1
Image 2
Image 3
Page 135
Titles
GLOSSARY OF IMPORTANT TERMS 
135 
'----.....::..-0+ 
t 
! 
PROBLEMS 
* 
Images
Image 1
Image 2
Page 136
Titles
R'C' = i/c' 
!L' 
Images
Image 1
Image 2
Page 137
Titles
Zo = 50 0 
C=') 
R=6000 
L=0.02 mH 
of ZL. 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 138
Titles
R 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 139
Titles
139 
(a) ZL = (50 - j50) Q 
* - 
- - 
I --* 
Pin = 291cl ViIi ). 
Zo= 50 Q 
Images
Image 1
Image 2
Page 140
Titles
son 
---AI2--- 
A 
B 
son I-AI2-1 
P~v-I-Pav 
I 
z, = 100 n 
ZL = (50 + jlOO) n 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 141
Titles
III = 3..1/81 12 = 5),/8 
C B IA 
(a) Zt = 3Zo• 
(0 r = j. 
Images
Image 1
Image 2
Page 142
Titles
./) 
1-0.3A-I/ 
30n 
---0.3/. --- 
* 
* 
1 = '! 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 143
Titles
12 V ----r----. 
o 
o 
Images
Image 1
Page 144
Titles
Vector Analysis 
R 
E 
T 
Objectives 
p 
3 
A 
H 
c 
Chapter Contents 
Images
Image 1
Image 2
Page 145
Titles
145 
Overview 
z 
;- ••.. ---+-~y 
A = alAI = aA. 
, A A 
a=-=-. 
IAI A 
3-1 Basic Laws of Vector Algebra 
Images
Image 1
Image 2
Image 3
Image 4
Page 146
Titles
146 
C =A+B = B+A. 
C=A+B 
=xCr+YCy+zCz. 0.7) 
D=A-B 
3-1.2 Vector Addition and Subtraction 
A = xA, +yAy +zA". 
_ A xAx + yA, +zA/ 
a= - = . 
3-1.1 Equality of Two Vectors 
A = aA = xA, + yAy + zA/. 
Images
Image 1
Image 2
Image 3
Image 4
Page 147
Titles
3-1.3 Position and Distance Vectors 
3-1.4 Vector Multiplication 
~ 
B = kA = akA = x(kAx) + y(kA,) + z(kA,J 
B 
------------'" 
z 
Images
Image 1
Image 2
Image 3
Image 4
Page 148
Titles
14X 
A 
A = IA I = yt A . A . 
The dot product obeys both the commutative and distributive 
(3.18) 
i . Y = y . i = z . i = O. 
The cross product is anticommutative and distributive. 
A x B = -B x A 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 149
Titles
- - - - _I' 
.-#---'---t-----,+-I~y 
.. 
A x A = O. 
y x z=x e : 
A . Y = IAIIYI cos {3 = A cos {3, 
Example 3·1: Vectors and Angles 
A = x2 + y3 + Z3. 
A = IAI = J22 + 32 + 32 = m , 
a= ~ = (x2+Y3+Z3)/m. 
--+ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Page 150
Titles
~--------y 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 151
Titles
3-2.1 Cartesian Coordinates 
Review Question 3-4: If A x B = 0, what is eAB? 
Review Question 3-3: If A· B = 0, what is eAB? 
3-2 Orthogonal Coordinate Systems 
Example 3-2: Vector Triple Product 
Images
Image 1
Tables
Table 1
Page 152
Titles
152 
Images
Image 1
Tables
Table 1
Page 153
Titles
dlz = d z, 
dl, = dr. 
3-2,2 Cylindrical Coordinates 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 154
Titles
dz 
, 
" 
" 
dsz = z r dr d1> 
z 
ds~~ = ~ drdz 
- - 
ds", = ¢I dl; di, = ¢I dr dz (r-z plane), 
ds, = Z dl, dl", = zr dr d¢ (r-¢ plane). 
Images
Image 1
Image 2
Image 3
Image 4
Page 155
Titles
o 
z 
= rro - zh, 
, A 
a=- 
IAI 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 156
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 157
Titles
(3,49) 
ds", = ell dlR dIg =eIlR dR de 
157 
dV = dl « dla dt", = R2 sine dR de dd». 
R sin a dq, 
= R d R + 9 R de + ~ R sin e d ¢, 
(3,47) 
(3,46) 
(3,48) 
3-2.3 Spherical Coordinates 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 158
Titles
Technology Brief 5: Global Positioning System 
Principle of Operation 
Images
Image 1
Image 2
Image 3
Page 159
Titles
Differential GPS 
Images
Image 1
Image 2
Page 160
Titles
dcp 
o 
3-3 Transformations between Coordinate 
cpl2:r 
S=R2 f sin e' dO f dcp 
Example 3-6: Charge In a Sphere 
Example 3-5: Surface Area In Spherical Coordinates 
3-3.1 Cartesian to Cylindrical Transformations 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 161
Titles
r· x = x· xa + y. xh = a. 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 162
Titles
Example 3-7: Cartesian to Cylindrical Transformations 
Images
Image 1
Tables
Table 1
Page 163
Titles
(R, e, ~): 
R = ia + ib, 
o 
_ [\lX2 + V2] 
(V) 
3-3.2 Cartesian to Spherical Transformations 
Images
Image 1
Image 2
Image 3
Page 164
Titles
164 
3-3.3 Cylindrical to Spherical Transformations 
3-3.4 Distance between Two Points 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 165
Titles
)---------------- ..• y 
Answer: P = (4. 2rc/3. rc/3). (See 'B') 
A = i(x + y) + Y(y - x) + zz 
P2 = (x + dx, y + dy, z + dz) 
3-4 Gradient of a Scalar Field 
(3.73) 
(3.71 ) 
(3.70) 
dT = VT ·dl. 
aT aT aT 
dT = - dx + - d v + - d z. 
ax ay' az 
.aT .aT .aT 
d.T = x- ·dl +y- ·dl +z- ·dl 
ax av ilz 
[aT 'IT aT] 
= i-+y-(-+z- ·£11. 
ax ay az 
n ~a .0 ~a 
ax oy Jz 
d ~ aT .aT • aT 
ax ay az 
0.69) 
dl = x dx + Y dy + z d z, 
Images
Image 1
Image 2
Page 166
Titles
166 
At (I, -\. 2). 
dTI 
4-12-2 -10 
(3.78) 
v 
iJT iJT ilr er iJep iJT oz 
3-4.1 Gradient Operator in Cylindrical 
(3.76) 
r- 
T2 - TI = I V T . ell. 
Example 3-9: Directional Derivative 
ilx ay iJz . 
= x2x + y2yz + z.'.2. 
:-- = ? ? = cos ep , 
aep I. 
-- = -- sin e. 
ax r 
st sr sin ep et 
ax iJr r iJep 
(3.80) 
a,--- - 
dT A A A A? (X2 + y3 - Z2) 
ffi 
et A 1 sr er 
VT = r- +.-- +z-. 
ilr r aep iJz 
(3.81) 
Images
Image 1
Image 2
Page 167
Titles
(_ a - I a - I a) (a) 
iJ R R ae R sin e a¢ R 
= nVo [-y6 + z4]. 
ax ily az 
3-4.2 Properties of the Gradient Operator 
Images
Image 1
Image 2
Image 3
Image 4
Page 168
Titles
T 
Land 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 169
Titles
169 
r y 
r hi 
.p x-v 
GRADIENT OF A SCALAR FIELD 
CD Module 3.2 Gradient 
Select a scalar function f i», y, z), evaluate its gradient, 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 170
Titles
E 
J-x 
Idsl ds 
+ 
3-5 Divergence of a Vector Field 
Images
Image 1
Image 2
Image 3
Image 4
Page 171
Titles
.6. v ....• 0 ~V 
iJE\" 
ilEz 
. az . 
. aE, dE\" aEz 
div E = - + -' + - . 
ax ay ilL 
1 ( ee, iJE, iJ£z) 
E·ds= -+-+- 
[ aEx] 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 172
Titles
(a) V·E=-+-' +-.- 
ax ilv aL 
Images
Image 1
Image 2
Tables
Table 1
Page 173
Titles
Technology Brief 6: X-Ray Computed Tomography 
Principle of Operation 
Images
Image 1
Image 2
Page 174
Titles
Image Reconstruction 
Images
Image 1
Image 2
Page 175
Images
Image 1
Image 2
Image 3
Image 4
Page 176
Titles
176 
3-6 Curl of a Vector Field 
+ f xBo' X dx + f xBo' Y dy 
Images
Image 1
Image 2
Image 3
Page 177
Titles
177 
o 
\l x B =curlB 
= .lim _I [it Ii. B .dlJ (3.103) 
(3.101) 
Images
Image 1
Image 2
Tables
Table 1
Page 178
Titles
3-6.2 Stokes's Theorem 
s c 
" (0 B z iJ Br ) " (0 B, 0 B / ) 
VxB=x -.---.- +y -.---.- 
iJy az az ax 
Example 3-12: Verification of Stokes's Theorem 
+z ----- 
ax av 
3-6.1 Vector Identities Involving the Curl 
V x (A + B) = V x A + V x B. 
Images
Image 1
Image 2
Tables
Table 1
Page 179
Titles
= I ~ d z 
= r5. 
=«112. 
179 
.i. 12 sin e 1 
f B . dl = I (z ~) . z d z 
I(V x B) ·ds 
r a¢ az az ar 
= r~~ (COS¢) _ ~~ (COS¢) 
= -r-~- + «11-.,- . 
I ( a sn ) 
Images
Image 1
Page 180
Titles
ro 
I~" 
,'\. 
3-7 Laplacian Operator 
.av .av .av 
ax ay az 
aAx aAv aAz 
a2v a2v a2v 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 181
Titles
Chapter 3 Relationships 
ax ay ilz 
By az az ax 
~ (aBI' aBx) 
a2v a2v a2v 
v s 
s c 
Images
Image 1
Image 2
Page 182
Titles
182 
CHAPTER HIGHLIGHTS 
GLOSSARY OF IMPORTANT TERMS 
CHAPTER 3 VECTOR ANALYSIS 
Page 183
Titles
A(B·A) 
a a IAI2' 
A(B ·A) 
D = B - IAI2 
PROBLEMS 
(d) A x C, 
Images
Image 1
Tables
Table 1
Page 184
Titles
y =x -I. 
(e) P3 = (4, n. 5) 
Tables
Table 1
Page 185
Titles
P3 = (1, -I, 2) 
Images
Image 1
Image 2
Image 3
Page 186
Titles
(a) A = xy2 + yxz + z4 at PI = (1, -I, 2) 
Images
Image 1
Image 2
Image 3
Page 187
Titles
I/-'\'-~ ~-~\~-/I 
t t . * + * . t t· * + • • t t 
t J! :/ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Tables
Table 1
Page 188
Titles
(h) A = x sin C~) + ysin C~'), for -10:s x, y:s 10 
~, 
1/ 
I \ 
/ 
. " {o
Images
Image 1
Image 2
Tables
Table 1
Table 2
Page 189
Titles
189 
~L:Lx 
--....L..--__t*"----- X 
~-_~~_-":!-- x 
o 
:kLx 
(e) E = r (3 - l~r) + zz 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 190
Titles
190 
Page 191
Titles
Electrostatics 
c 
H 
A 
p 
4 
T 
E 
R 
Chapter Contents 
Objectives 
Images
Image 1
Image 2
Page 192
Titles
4- 2 Charge and Current Distributions 
V' ·B=O, 
Max well's Equations 
192 
4-1 
Images
Image 1
Image 2
Image 3
Image 4
Page 193
Titles
4-2.1 Charge Densities 
! ! 21°.1-, 
Q = Pe dz = 2z (/:L = z () = 10 - C. 
° () 
PI = lJ~o M = dt 
Example 4-2: Surface Charge Distribution 
Example 4-1: Line Charge Distribution 
Images
Image 1
Image 2
Image 3
Page 194
Titles
6r ~ 
Ps = ., = 2 x IO-r 
. 3 x 10-- 
Q = f Ps ds 
= f f (2 x 102r)r dr dif> 
3 0 
I-M-l 
Sq = Pvu . /).s /).t 
/'>.q = p,u' /'>.5 Sr, 
/'>.q 
(4.9) 
4-2.2 Current Density 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 195
Titles
/I'\.. 
/ . , 
4-3 Coulomb's Law 
Images
Image 1
Image 2
Image 3
Page 196
Titles
196 
E = EI + E2 
E 
(VIm). (4.19) 
4-3. t Electric Field due to Multiple Point Charges 
I [ (R - Rd (R - R2) ] 
R2 = -x3 + y - z2, 
Images
Image 1
Image 2
Image 3
Page 197
Titles
dE 
197 
(VIm). 
108JrEo 
-5 X - 5'4 - z2 -'i 
. I08JrEo 
x2 - 5'8 - z4 x 10-10 
I [2(X2 - 5'2 - z) 4(X6)] -5 
4JrEo 27 216 
4JrER'- 4JrFR'- 
(4.20) 
E = JdE = _1_ Ji' Pv dV' 
4Jr£ RI2 
4-3.2 Electric Field due to a Charge Distribution 
41rE RI2 
41rE R,2 
Images
Image 1
Image 2
Image 3
Page 198
Titles
z 
R'I = =ib + zh. 
z 
I A'Pedl 
pfh (-rb+zh) 
Example 4·4: Electric Field of a Ring of Charge 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 199
Titles
E 
Images
Image 1
Image 2
Image 3
Image 4
Page 200
Titles
4-4 Gauss's Law 
V·D=py 
f V· D dV = f D . ds. 
v s 
s s 
Images
Image 1
Image 2
Image 3
Page 201
Titles
201 
,.. 
D , q 
f f i'Dr·frdifJdz=pth 
E= D =r Dr =r~ (4.33) 
. . eO eO 271' sor 
Example 4-6: Electric Field of an Infinite Line Charge 
Images
Image 1
Image 2
Image 3
Page 202
Titles
Answer: E=YPtYI[rreo(y2+J)]. (See e-) 
Answer: E = 0 for R < a; 
E = Rpsa2 I(e R2) for R > a. (See e-) 
Answer: (a) D = RPvRI3, 
(b) D = RPva3/(3R2). (See ~) 
4-5 Electric Scalar Potential 
(4.36) 
(4.35) 
(4.34) 
(1). 
Fcx! = =F; = -'lE. 
d W = F ex! . dl = -'1 E . dl 
The term "voltage" is short for "voltage potential" lind 
4-5.1 Electric Potential as a Function of Electric 
dV = - = -E·dl 
(4.37) 
Tables
Table 1
Page 203
Titles
f (\7 x E) . ds = f E . dl = 0, 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 204
Titles
4-5.2 Electric Potential Due to Point Charges 
(4.48b) 
(surface distribution), 
I J Ps , 
V=- -ds 
41r8 R' 
v = _1_ J Pv dV' (volume distribution), (4.48a) 
41r8 R' 
v' 
4-5.3 Electric Potential Due to Continuous 
(V). (4.43) 
p 
4-5.4 Electric Field as a Function of Electric 
v = _1_ J Pl dl' (line distribution). 
41r8 . R' 
r 
(4.48c) 
V=- R-- 'RdR=-- 
£IV = -E·dl. 
£IV = VV· £II. 
IE = -VV. (4.51) I 
v- _1 '" qi 
- 41rs (;;j IR - Ri J 
(V). (4.47) 
Images
Image 1
Image 2
Page 205
Titles
Example 4-7: Electric Field of an Electric Dipole 
E = -V'V 
oR + R ae +. R sin e il¢ , 
P'R 
V=--.". 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 206
Titles
qd .. ~ ~ 
4-5.5 Poisson's Equation 
Pv 
V-V = V· (VV) = -- + -. - + -. , 
Images
Image 1
Image 2
Page 207
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 208
Titles
4-6.1 Drift Velocity 
=aE, 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 209
Titles
4-6.2 Resistance 
Images
Image 1
Image 2
Page 210
Titles
(4.72) 
R I 
V = VI - V2 = - f E· dl 
+ - 
v 
= - fiE,. i dl = E,I 
J = f J. ds = f erE· ds = a ExA 
Example 4-9: Conductance of Coaxial Cable 
(4.73) 
, J 
E=r- 
,I , J 
(4.70) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 211
Titles
fa fil I r·rdr 
VI =- E·dl=- -- --- 
P = ! alEI2 dV 
1 (b) 
G'= G 
I Zn o 
= --- 
4-6.3 Joule's Law 
= (a ExA)(E,l) = IV 
P = !E'JdV 
(W)(Jou]e's law), (4.79) 
Images
Image 1
Image 2
Page 212
Titles
Technology Brief 7: Resistive Sensors 
Piezoresistivity 
Images
Image 1
Tables
Table 1
Page 213
Titles
-------&-------. Foree (N) 
( CiF) 
Images
Image 1
Image 2
Page 214
Titles
YOU! = Vo (f..R) 
IE) 
F=O 
Images
Image 1
Image 2
Image 3
Image 4
Page 215
Titles
215 
E 
E 
E E E 
E 
1 
E 
1 
- 
4- 7 Dielectrics 
Images
Image 1
Image 2
Image 3
Image 4
Page 216
Titles
216 
4-7.1 Polarization Field 
4-7.2 Dielectric Breakdown 
D = EoE + P, 
Images
Image 1
Image 2
Tables
Table 1
Page 217
Titles
fE.dl= !Et.itdl+ !E2.i2dl=0. 
4-8 Electric Boundary Conditions 
(VIm). (4.90) I 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 218
Titles
Example 4-10: Application of Boundary CondItions 
J... !J.h 
L- __ ..;.....-~ ... 2" 
c d 
---111- 
218 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 219
Titles
219 
z 
Ell jErx+Efy 
tan (h = - = ..:.....---- 
E2x = Elx, 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 220
Titles
220 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 221
Titles
4-8.1 Dielectric-Conductor Boundary 
(4.100a) 
Elt = Dlt = 0, 
Din = slEln = Ps· 
Images
Image 1
Image 2
Image 3
Page 222
Titles
4-8.2 Conductor-Conductor Boundary 
(81 82) 
(electrostatics) . 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 223
Titles
Input 
!._Q.! 
223 
Images
Image 1
Image 2
Tables
Table 1
Page 224
Titles
224 
4-9 Capacitance 
v 
+ 
(4,105) 
Figure 4-23: A de voltage source connected to a capacitor 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 225
Titles
leE.ds 
- fE.dl 
(F), 
Images
Image 1
Page 226
Titles
v 
+ 
z 
, 
o 0 
(4.114) 
(4.115) 
Q (h) 
(4.113) I 
Example 4-12: Capacitance Per Unit Length of Coaxial 
Line 
! C Zn e 
(4.117) 
Images
Image 1
Image 2
Image 3
Image 4
Page 227
Titles
4-10 Electrostatic Potential Energy 
Images
Image 1
Image 2
Image 3
Page 228
Titles
Technology Brief 8: Supercapacitors as Batteries 
Capacitor Energy Storage Limitations 
Images
Image 1
Page 229
Titles
Energy Storage Comparison 
Images
Image 1
Image 2
Image 3
Page 230
Titles
Future Developments 
0.01 +----------.------.--------....., 
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 231
Titles
I mage Method 
F = - V We = -z ~ -- = -z -,,- , 
rlz 2EA ~EA 
Answer: We = 4.1 J. (See <"1') 
4-11 
If J 
v 
Images
Image 1
Image 2
Page 232
Titles
• 
if 
l;J \\ C V=o 
\', l r c 
-Q 
v=o 
if 
• 
- - - - - - -' - - - - - ~ 
~'~ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 233
Titles
t 
Chapter 4 Relationships 
Example 4-13: Image Method for Charge Above 
Images
Image 1
Image 2
Page 234
Titles
Air ---+-- 
Fluid Gauge 
Technology Brief 9: Capacitive Sensors 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 235
Titles
/ 
:=: 1"=,,,1"="11,11 
Humidity Sensor 
Pressure Sensor 
Noncontact Sensors 
Images
Image 1
Page 236
Titles
d1 1 .10 C1 
1.10 
3TC2 
Images
Image 1
Page 237
Titles
,,~:::::::~, 
I:: r. 
"I' 1:: 
,','" =-» c, 
c 
Fingerprint Imager 
Images
Image 1
Image 2
Page 238
Images
Image 1
Image 2
Image 3
Page 239
Titles
E __ 1_ qi(R - Ri) 
1 f AI Ps ds' 
E - _1_ f ft' Pe dl' 
=z- 
E= D =1' Dr =r~ 
Chapter 4 Relationships (continued) 
- - !E'dl 
E=-VV 
CHAPTER HIGHLIGHTS 
Images
Image 1
Image 2
Image 3
Page 240
Titles
240 
GLOSSARY OF IMPORTANT TERMS 
PROBLEMS 
p; = IOR2 cos2 (J (mC/m3). 
* . ~ 
Images
Image 1
Page 241
Titles
241 
, 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 242
Titles
D = x2(x + y) + y(3x - 2)') 
, 
, 
, 
.. 
.. 
.. 
.. 
.. 
.. 
.. 
, 
, 
----------------~~------------~x 
Images
Image 1
Image 2
Image 3
Page 243
Titles
v 
v 
v 
.... 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 244
Titles
(a, 0) 
• 18 
Images
Image 1
Image 2
Image 3
Page 245
Titles
1----1 cm----f 
(Vim) 
- 
~----------~II:~+~--------~ 
Images
Image 1
Image 2
Page 246
Titles
T 
1 
(a) 
2cm 
T 
1 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 247
Titles
r ••••.• --:---i- ... - .... ~ 
, I I.....' 
: J::D- 
v 
+ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 248
Titles
d - - -. Q = (0, d, d) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 249
Titles
Magnetostatics 
c 
H 
A 
p 
5 
T 
E 
R 
Chapter Contents 
Objectives 
Images
Image 1
Image 2
Page 250
Titles
Overview 
Fm=quxB 
v ·B;'O, 
5-1 
Magnetic Forces and Torques 
Images
Image 1
Image 2
Tables
Table 1
Page 251
Titles
Fm = quB sin f) 
(a) 
R 
(b) 
dW = Fm ·dl = (Fm -u) dt = O. (5.6) 
I F = Fe + Fm = qE+ qu X B == q(E + u X B). (5.5) I 
Images
Image 1
Image 2
Image 3
Page 252
Titles
5-1.1 Magnetic Force on a Current-Carrying 
Images
Image 1
Tables
Table 1
Page 253
Titles
(S.12) 
(S.11 ) 
2S3 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Table 2
Page 254
Titles
(a) 
8 
Fl = x(2lr) x yBo = z21rBo (N). 
Example 5-1: Force on a Semicircular Conductor 
R 
c 
= -Z/ f rBosin¢ d4> = -s u-s; (N). 
Images
Image 1
Image 2
Image 3
Page 255
Titles
F 
(S.14) 
T=dxF 
5-1.2 Magnetic Torque on a Current-Carrying 
Images
Image 1
Image 2
Image 3
Page 256
Titles
f' gO/H L 
B FJ 
f 1 CD 
Im=iNIA=nffl 
= (-x~) x (zlhBu) + (x~) x (-Z1bBo) 
=yfahBo=y/ABo, (5.16) 
Images
Image 1
Image 2
Tables
Table 1
Page 257
Titles
Answer: I = 8 rnA. (See e ) 
5-2 The Biot-Savart Law 
I dl x R 
Images
Image 1
Image 2
Image 3
Image 4
Page 258
Titles
2SR 
, 
, 
,'R 
s 
P®dH 
(5.23) 
5-2.1 Magnetic Field due to Surface and Volume 
H= 4~ f Js;/l ds 
s 
H=4~f J;2RdV 
=411' ~ 
Example 5-2: Magnetic Field of a Linear Conductor 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 259
Titles
2S9 
(a) 
z = -reote. 
p 
1/2 
Jr2 + (1/2)2 
-1/2 
- Jr2 + (1/2)2 
(S.29) 
(T). 
(S.2S) 
R2 -«II 4n 7 d z: 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 260
Titles
\ 
" , 
- - 
\ 
t 
, 
...• , \ \ 
, I I I 
- .". , I 
~ , I I I 
..•.. - , , , , 
,~"""" •.... 
""" •.... ~-- 
" ..•. 
\ , 
I \ I 
, ~ 
...• ~ 
- ~ , " , \ \ \ t I , , 
- , , , , \ \ \ , II , ~ 
- ~'''' \ \ \ \ I 1 
, - - , " , \ \ \ \ \ \ 
~ - ~"" \ \ \ \ , 
Example 5-3: Magnetic Field of a CIrcular Loop 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 261
Titles
(AIm). (5.34) 
I _ I dl 
d H = -- Idl x RI = 1 ' 
4n R2 4n(a- + z2) 
_ _ _ I cos (i 
(5.36) 
5-2.2 Magnetic Field of a Magnetic Dipole 
H= 4Jl'R3 (R2cos8 +8sin8) 
(for R »a). (5.38) 
- 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 262
Titles
~ 41 ~ 
5-2.3 Magnetic Force Between Two Parallel 
~ I 
4rrr 
262 
Images
Image 1
Image 2
Image 3
Image 4
Page 263
Titles
!B.dS=O. 
v . D = p; •••• f D . ds = Q. 
5-3.1 Gauss's Law for Magnetism 
5-3 Maxwell's Magnetostatic Equations 
(5.42) 
(5.41 ) 
I F2 ,fLo/1/2 
F~=-=-y--. 
~ I 2nd 
II' ( ') flO II 
= ~ z x -x -- 
~ 2rrd 
, fLo/llll 
Zn d 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 264
Titles
Technology Brief 10: Electromagnets 
Basic Principle 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 265
Titles
The Doorbell 
Magnetic Relays 
Images
Image 1
Tables
Table 1
Page 266
Titles
The Loudspeaker 
Magnetic Levitation 
( 
Images
Image 1
Image 2
Image 3
Page 267
Titles
TECHNOLOGY BRIEF 10: ELECTROMAGNETS 
267 
Figure TF1 0-4: The basic structure of a speaker. 
Figure TF10-5: Magnetic trains. (Courtesy Shanghai.com.) 
Images
Image 1
Image 2
Image 3
Image 4
Page 268
Titles
5-3.2 Ampere's Law 
, , 
VxH=J •.• fH.dl=,. 
s s 
Images
Image 1
Image 2
Page 269
Titles
, 
- - ~ 
269 
y 
... 
.. ... 
--_ .• 
f HI ·dll = 'I, 
, 
... 
L---~a~------------------~~r 
HCa) = .L: 
H 
H 
H 
(c) 
H 
0' 
Example 5-4: Magnetic Field of a Long Wire 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 270
Titles
II = -, 1= - 1. 
(for rj :::a). 
1 
(for r: :::: 0). 
Images
Image 1
Image 2
Image 3
Page 271
Titles
Example 5-6: MagnetiC Field of an Infinite Current Sheet 
z 
{ -yH 
H= yH 
I A t, 
-y - 
H= 2 
'---~ - - - - - - -- -:~ 
;~.~E ;.~ ... ~._.~~_~.~ __ r : J:~~!~----LJ ...• ~. +~--Y 
, , N 1 
H=-,H = -,- 
2nr 
f H . dl = f (-~H) . ~r d ¢ = - 2n r H = - N I. 
e 0 
Images
Image 1
Page 272
Titles
V x (V x A) = fLJ. 
V2A = V(V . A) - V x (V x A), 
272 
5-4 Vector Magnetic Potential 
V·A=O. 
" 
(5.52) 
V = _1-/ Pv dV'. 
v' 
(5.62) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 273
Titles
1=-- = --. 
5-5.1 Electron Orbital and Spin Magnetic 
5-5 Magnetic Properties of Materials 
A- = !!:..- / J.r sv' 
v' 
Images
Image 1
Image 2
Page 274
Titles
274 
(5.72) 
5-5.2 Magnetic Permeability 
- - - - 
- - 
L. ----- - - 
( eu) , 
eur (e) 
----- - L 
(5.73) 
en 
In, = ---, 
Images
Image 1
Image 2
Image 3
Image 4
Page 275
Titles
Answer: (a) m.; = 9.3 x 10-24 (A.m2), 
(b) M = 7.9 X 105 (AIm). (See ) 
5-5.3 Magnetic Hysteresis of Ferromagnetic 
Images
Image 1
Tables
Table 1
Page 276
Titles
B 
B 
B 
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 277
Titles
(5.81) 
5-6 Magnetic Boundary Conditions 
fH.dl= f HI' i, dE+ f H2' i2d£ = I. 
e " 
(5.82) 
0'["2 X (HI - H2)1 = Js : D. 
(HI - H2)' t, !11 = J,'" .6./. 
f B . ds = 0 •••. I BIn = B2n·1 
Images
Image 1
Image 2
Page 278
Titles
5-7 Inductance 
5-7.1 Magnetic Field in a Solenoid 
Images
Image 1
Image 2
Image 3
Image 4
Page 279
Titles
- un I . e . ) 
A .. zJ.l
B~zJ.l
(5.86) 
dB = fl dH = z ) 1 1/1 dz. 
-a-! 
5-7.2 Self-Inductance 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 280
Titles
/ ~~:-:-:~::::::-::- .. -=-= .. --:--r t 
__ __ .. _ ~ ~ ~t f 1 
N2 
/,( N), N 
s 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 281
Titles
(5.100) 
5-7.3 Mutual Inductance 
(5.98) 
Example 5-7: Inductance of a Coaxial Transmission 
4> = If B dr = If I·Ll dr = /Lll In (~) . 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 282
Titles
2H2 
(5.105)1 
Even though this expression was derived Ior a solenoid, it 
5-8 Magnetic Energy 
Example 5-8: MagnetiC Energy in a Coaxial Cable 
Images
Image 1
Image 2
Image 3
Image 4
Page 283
Titles
B =. JJ..ol 
Ta2 
H = z --:;--~...", 
L = ~ = ~ = ~ f B· ds 
H=-=-, 
If') til2 f I 
v v 
Chapter 5 Relationships 
T=mxB 
c 
V . B = 0 ..•••. f B . ds = 0 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 284
Titles
Technology Brief 11: Inductive Sensors 
Linear Variable Differential Transformer (LVDT) 
• • 
Images
Image 1
Image 2
Page 285
Titles
o 
Images
Image 1
Image 2
Image 3
Page 286
Titles
Eddy-Current Proximity Sensor 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 287
Images
Image 1
Page 288
Titles
PROBLEMS 
o 
0B 
o 
o 
10 0 01 
o 
o 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Table 2
Page 289
Titles
, 
, 
- - , 
-------:-:=.~ 
I 
--- 
~t- .;...i ----I~y 
n 
Images
Image 1
Image 2
Image 3
Image 4
Page 290
Titles
----:....--------1 •... ----- •. x 
P 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 291
Titles
T l,-IOA 
t ~2m-013~IOA 
_I G)l,-IOA 
291 
H 
!I 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 292
Titles
r 
=-z-- X v 
Images
Image 1
Image 2
Page 293
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 294
Titles
z 
x 
A------------y 
y 
d 
Images
Image 1
Image 2
Image 3
Image 4
Page 295
Titles
Maxwell's Equations for 
Objectives 
R 
E 
T 
p 
6 
A 
H 
c 
Chapter Contents 
Images
Image 1
Image 2
Page 296
Titles
296 
Dynamic Fields 
6-1 Faraday's Law 
Images
Image 1
Tables
Table 1
Page 297
Titles
Vcmf = -N d = -N !!... f B· ds 
s 
Images
Image 1
Image 2
Image 3
Page 298
Titles
6-2 Stationary Loop in a Time-Varying 
f 1 1 
R 
, 
R 
2 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 299
Titles
f liJB 
c s 
s s 
Example 6-1: Inductor In a Changing Magnetic Field 
V~~f = f E· dl. 
Images
Image 1
Image 2
Image 3
Page 300
Titles
300 
z 
(A). 
 = j B· ds 
= j[BO(Y2+Z3)SinM].ZdS 
lr d 
= -3][N(va2Bocoswt. 
Images
Image 1
Image 2
Page 301
Titles
(Wb), 
tr del> 
Vemf = -- = 1.2 (V). 
dt 
Example 6-2: Lenz's Law 
eI> = f B· ds = f (-zO.3t)· z ds 
s s 
= -0.3t x 4 = -1.2t 
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Page 302
Titles
1= 
6-3 The Ideal Transformer 
- - - - ~ 
 --- 
 --- 
V~ = -N~ -. 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 303
Titles
6-4 Moving Conductor in a Static 
:~ 
11 N2 
.......... =-- 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Table 2
Page 304
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Page 305
Titles
z 
R 
u 
(V). 
Be\']) = iO.2e-O.1Y1 = zO.2e-O.2 (T). 
Example 6-4: Moving Loop 
(6.28) 
o 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 306
Titles
f d: 
VI2 = f (u X B) . dl 
R 5 
B0 
Images
Image 1
Image 2
Tables
Table 1
Page 307
Titles
y 
B = 7oRo, 
B 
x 
" 
o 
~'i' 
6-5 The Electromagnetic Generator 
Images
Image 1
Image 2
Image 3
Image 4
Page 308
Titles
~ w 
+ f [( -DW~) x IBo] ·xdx. 
= f [(DW~) x iBo] ·xdx 
Images
Image 1
Page 309
Titles
B 
Vcmf = V:~f + Ve~f 
c 
JaB J 
= - at . ds + j (u x B) . dl. 
s c 
6-6 Moving Conductor in a 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 310
Titles
Technology Brief 12: EMF Sensors 
Piezoelectric Transducers 
1/ -0 
--. ./ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 311
Titles
-, 
Faraday Magnetic Flux Sensor 
Images
Image 1
Image 2
Image 3
Page 312
Titles
Thermocouple 
Images
Image 1
Image 2
Page 313
Titles
Id = IJd ·ds = I ~~ -ds, (6.44) 
s s 
dVc d 
dt dt 
s s s 
a 
= --;- (BoA cos2 tot ) 
a 
Example 6-6: Electromagnetic Generator 
f H . dl = Ie + f ~~ . ds (Ampere's Jaw). (6.43) 
c s 
6- 7 Displacement Current 
Images
Image 1
Image 2
Page 314
Titles
\ 
faD 
12d = - ·ds 
at 
Images
Image 1
Image 2
Image 3
Image 4
Page 315
Titles
315 
6-9 Charge-Current Continuity Relation 
6-8 Boundary Conditions for 
Images
Image 1
Tables
Table 1
Page 316
Titles
J 
J 
I = - d Q = _!!... f p av 
1 V· J= -if, (6.54>1 
which is known as the charge-current continuity relation, or 
f J . ds = - :t f p; dV. 
s V 
V·J=O, 
f J. ds = 0 (Kirchhoff·scurrentlaw). 
(6.56) 
V, J dV = - -. dV. 
Images
Image 1
Image 2
Image 3
Image 4
Page 317
Titles
6-10 Free-Charge Dissipation in a 
Electromagnetic Potentials 
6-11 
at E 
Images
Image 1
Image 2
Image 3
Image 4
Page 318
Titles
318 
E= -VV 
v x E+- =0 
at 
6-11.1 Retarded Potentials 
(dynamic case). (6.70) I 
v' 
v' 
E' = -VV. 
E=E+-~ . 
Images
Image 1
Image 2
Image 3
Image 4
Page 319
Titles
v' 
6-11.2 Time-Harmonic Potentials 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 320
Titles
320 
Example 6-8: Relating E to H 
V(R) = - Pv i e dV' (V). (6.82) 
v' 
(6.88) 
(6.89) 
(6.91 ) 
(6.90) 
y Z 
a/ay a/az 
x 
(6.83) 
(6.86) I 
(6.87) 
~ I ~ 
VxE=-jw~ii 
,.",1- 
H=--VxE. 
A(R) = ; f J{Ri) ;, dV', (6.84) 
v' 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 321
Titles
Chapter 6 Relationships 
B=V'xA 
H(z, t) = me [H(Z) ejUJl] 
= y 0.11 sine JOIOt - 133z) 
'. IOk2 -,kz 
V =-N -·ds 
s 
k=w.j!I£ 
at 
det> d f tr m 
V. f = -- = -- B· ds = V mf + V mf 
Images
Image 1
Image 2
Page 322
Titles
CHAPTER HIGHLIGHTS 
GLOSSARY OF IMPORTANT TERMS 
PROBLEMS 
* . .. . 
~------~~~------~ 
~==:::::::::II 
Rl 
Images
Image 1
Page 323
Titles
T 
1 
~----------------------~y 
z 
(b) cot = n /4 
Images
Image 1
Image 2
Image 3
Image 4
Page 324
Titles
z 
Yo 
o 
o 
-- 
\ 
80 ... ' 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Tables
Table 1
Page 325
Titles
a = 10-4 (S/m) 
Pv = Par cos w{ (C/m3). 
T 
1 
I 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 326
Titles
(VIm). 
(AIm). 
E = xEosinaycos(wt - kz), 
E(R, e; t) = 
, 2 X 10-2 
Images
Image 1
Page 327
Titles
Plane-Wave Propagation 
Chapter Contents 
R 
E 
T 
Objectives 
p 
7 
A 
H 
c 
Images
Image 1
Image 2
Page 328
Titles
32R 
Unbounded EM Waves 
, .. ~ 
/,:"-~" .. ", 
Images
Image 1
Tables
Table 1
Page 329
Titles
0.3) 
- - 
V x H = jUJt:cE. 
- ( a)- 
= (a + jwE)E = jUJ E - ': E. 
v ·E= pv/e, 
V x E= -jw/LH, 
V x ii = J + jUJeE. 
~ ~ ~ 
V x H = J + jwt:E 
E(x, y, z; t) = me [R(x, y, z) ejwtJ. (7.1) 
7-1.1 Complex Permittivity 
RL 
Time-Harmonic Fields 
7-1 
Images
Image 1
Image 2
Image 3
Image 4
Page 330
Titles
7-2 Plane-Wave Propagation in Lossless 
- - 
E =-. 
2- (a2 a2 a2 ) - 
V E- - - - E 
- a2+,,2+a2 . 
- - 
~ ~ 
7-1.2 Wave Equations 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 331
Titles
7-2.1 Uniform Plane Waves 
0.26) 
HI' =0, 
H~ ( ) - ~E+ -jkz - H+ -jkz 
H"o = -ErO' 
1 aEt(z) 
~ 1 aEt(z) 
H,,= -.- =0. 
iJE~(z)/iJx = aE~(z)/ay = O. 
0.22) 
0.21) 
~ + ~ + ~ (iE, +yE" +zE;,J 
A (aH\' aHx) A. - 
z iJx - ay = zjwE:Ez. 
Ex(z) = E~(z) + E;(z) = E;oe-jkz + E~oejkz. (7.25) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 332
Titles
E 
Example 7-1: EM Plane Wave in Air 
A = - = = 300 m 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 333
Titles
(llA/m). 
- I, - I - '£+ (z) 
- I , ,- , '£-(z) ,E-() 'k 
7-2.2 General Relation Between E and H 
H 
s-. 
E '<. 
30n 3 
[(z, t) = xlE~ol cos(u)t - kz + 4>+) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 334
Titles
------------ E 
H,' 
y 
0.44) 
-+ - 
- 1. - A E, (7) A Et(L) 
H = - z x E = -x _. - + Y _. - . 
n rJ 1/ 
E- • E- + .. • f.~+. ) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 335
Titles
Technology Brief 13: RFID Systems 
RFID System Overview 
RFID Frequency Bands 
Images
Image 1
Image 2
Page 336
Titles
t 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 337
Titles
(7.46) 
(7.47a) 
Output 
- -jkf. 
Plane Wave 
Module 7.1 
7-3 Wave Polarization 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 338
Titles
I (Ed7o,t») 
IE(L. 1)1 = [a; + a;]lj21 cos(O)t - kL)I. 
7-3.1 Linear Polarization 
8 
Exo = ax. 
2 2 Ij2 
IE(z. t)1 = [E,(z, t) + Ey(z, t)] 
Images
Image 1
Image 2
Page 339
Titles
7-3.2 Circular Polarization 
1 [E\,(Z,I)] 
•• 
E 
,~ - 
Images
Image 1
Image 2
Page 340
Titles
z 
~rnn' 
Example 7-2: RHC Polarized Wave 
Images
Image 1
Image 2
Tables
Table 1
Table 2
Table 3
Page 341
Titles
tan X = ±- = ±- , 
7-3.3 Elliptical Polarization 
H(y, t) = 9te [H(Y) ejM] 
(rad/m) , 
4 
= -xl z e ' 
w.,ft; 
k=-- 
.,ft; 
-A 
E(y) = xEx + zEL 
Images
Image 1
Image 2
Image 3
Image 4
Page 342
Images
Image 1
Image 2
Tables
Table 1
Page 343
Images
Image 1
Image 2
Page 344
Titles
344 
Module 7.2 Polarization I 
UNEAR POLARIZATION 
OUtput 
(J f "" QO 
ModUle 7.3 
Q t d.11Ik. 
.BllelJ 
Images
Image 1
Image 2
Image 3
Page 345
Titles
Technology Brief 14: Liquid Crystal Display (LCD) 
Physical Principle 
LCD Structure 
Images
Image 1
Page 346
Titles
/ 
"----~~ 
"---- 
Two-Dimensional Array 
Images
Image 1
Image 2
Page 347
Titles
347 
1 
v 
Images
Image 1
Image 2
Image 3
Image 4
Page 348
Titles
7-4 Plane-Wave Propagation in Lossy 
(Q). (7.70) 
(rad/m). 
(Np/m) , 
1 + (~:r -1 
{ us' [ 
a=w "2 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 349
Titles
( £") 
a :::= w;/I ff, = i/f- (Np/m), (7.75a) 
f3 :::= w.fijii =w...;'"iW (radlm). (7.75b) 
V -;; 2£' V e 2w£ 
7 -4.2 Good Conductor 
( E") 1/2 
y = jwj;ii 1 - j-;; 
7-4.1 Low-Loss Dielectric 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 350
Titles
Example 7-4: Plane Wave in Seawater 
4 
a 
WErSO 2rr x ]03 x 80 x (l0-9/36rr) 
=9x105. 
= 
a.=~ 
a. 
a 
= (h ejrr /4) 0.126 = O.044ejrr /4 
Images
Image 1
Tables
Table 1
Page 351
Titles
IExol = 4.44 
E(z, t) = 9lr [xIExoleJ¢oe-aze-Jf!zeJwt] 
= xIExole-0.126z cos(2rr x \03t - 0.126z + 4>0) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 352
Titles
352 
Ib~ 
z 
W Envelope W Show S s 
Module 7.4 Wan Attenuation 
It onr 
z 
z=oo,,=oo Iml 
Phasors 
0' 
1=5.0" 
Average Power Density 
-J 
- 
7-5 Current Flow in a Good Conductor 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Image 11
Page 353
Titles
(7.90) 
1 
Z="",=-- - 
o 
- , 
--'I 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 354
Titles
, I , Rs (1 1) 
R = RI + R2 = - - + - 
I I 
n, = a~, = J;r~1l 
Images
Image 1
Image 2
Image 3
Image 4
Page 355
Titles
7 -6.1 Plane Wave in a Lossless Medium 
~ ~ 
k 
(W/m2). (7.100) I 
7 -6 Electromagnetic Power Density 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 356
Titles
.•. 
.•. 
.•. 
s 
.••. ----- ..•. 
, 
.•. " 
" S ," 
/ ..•... -.-~,' 
A,ph = 47rRs 
Example 7-5: Solar Power 
(VIm). 
7-6.2 Plane Wave in a Lossy Medium 
E(z) = x Ex(z) + y Ey(z) 
= (x E,o + y El'o)e-rX7e-i/lL, 
- 1 A A -CtZ -jIlT. 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 357
Titles
~ ~ ~ ~ Ie ~ 
Whereas the fields E(J:) and "(7) decay with 7. as e='. the 
7-6.3 Decibel Scale for Power Ratios 
PI 
G = P2' (7.110) 
[IE(Z)12] [IE(Z)I] 
A = IOlog IE(0)12 = 20 log IE(O)I 
(V2/R) 
Vi/R 
Example 7-6: Power Received by a Submarine Antenna 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 358
Titles
Chapter 7 Relationships 
k f 
I [ ] } 1/2 
a=w 2" 1+(7)-1 
I [ ] }1/2 
f3=W 2" 1+(7) +1 
- 1 ~ - 
E= -l'/kxH 
Images
Image 1
Image 2
Image 3
Page 359
Titles
GLOSSARY OF IMPORTANT TERMS 
(mAim). 
CHAPTER HIGHLIGHTS 
PROBLEMS 
Images
Image 1
Page 360
Images
Image 1
Page 361
Images
Image 1
Image 2
Page 362
Titles
E = x Eo cos(wt - ky) 
(Vim). 
(Vim). 
z 
L----E----/1 
a" 1 " 
x 
(VIm). 
* 
Images
Image 1
Image 2
Page 363
Titles
1 ! I! 2 
I! I! 2 
o 0 
Images
Image 1
Page 364
Titles
Wave Reflection and Transmission 
c 
H 
A 
p 
8 
T 
E 
R 
Chapter Contents 
Objectives 
Images
Image 1
Image 2
Image 3
Page 365
Images
Image 1
Image 2
Page 366
Titles
8-1.1 Boundary between Lossless Media 
z=o 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 367
Titles
(8.1 a) 
(8.1 b) 
H-,'() • E (z) • Ell -,'klz 
z=zx--=y-e' . 
Z - x oe , 
Z -zx---y-e . 
z=o 
z=o 
Ei 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 368
Titles
Eo = (T12 - TIl) Eo = rE~, 
I (2m) Ei E'i 
(X. I I b) 
TIl = --, 
Fr: 
Tl2 = --, 
..;s;; 
r= E? = 112 -1]1 (normaHncidence), (8.12a) 
(8.13) I 
8-1.2 Transmission-Line Analogue 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 369
Titles
IEilry 
8-1.3 Power Flow in Lossless Media 
n = 0, 1. 2, , if Or ~ 0, 
Images
Image 1
Image 2
Image 3
Image 4
Page 370
Titles
(lossless media), . (Se2l) 
A~ = -- = -- = 1 cm. 
~ Fr 3 
Example 8-1: Radar Radome Design 
, , 
(a) 
~ 
d 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 371
Titles
EI (z) = xEi(e-Y1L + reYI7), 
_ Ei 
HI (z) = y --2.(e-Ylz - reYP'), 
Ei 
Er 
r..JH' 
z= 0 
8-1.4 Boundary between Lossy Media 
Medium 1 
(n = 0, \,2 .... ) 
= - +n - 
4 2 
1}1 = fFH = t! :::: 120rr (Q), 
1}2 = Y -;; = y -;;; . Fr :::: v'2.2s = SOrr (Q), 
Example 8-2: Yellow Light Incident upon a Glass 
Surface 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 372
Titles
- Eb 'kk 
Images
Image 1
Image 2
Image 3
Page 373
Titles
~-Fz 
r= , 
~+Fz 
with cel = (Bl - jUllw) and eC2 = (£2 - jU2/w). (See 4,.) 
8-2 Snell's Laws 
~ .. 
., ~ 
~ , 
.. ' 
... 
Images
Image 1
Image 2
Image 3
Image 4
Page 374
Titles
sinOt = "Ill = JILISI 
Images
Image 1
Image 2
Image 3
Image 4
Page 375
Titles
Example 8-4: Light Beam Passing through a Slab 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 376
Titles
376 
8- 3 Fi ber Optics 
(8.39) 
(8.37) 
. ne 
Images
Image 1
Image 2
Image 3
Image 4
Page 377
Titles
I-T-J 
..•.. f\f\f\ 
Example 8·5: Transmission Data Rate on Optical Fibers 
I I 
Images
Image 1
Image 2
Image 3
Page 378
Titles
Technology Brief 15: Lasers 
• 
'11 
Basic Principles 
Images
Image 1
Image 2
Page 379
Titles
• 
• 
Wavelength (Color) of Emitted Light 
Principle of Operation 
Images
Image 1
Image 2
Image 3
Image 4
Page 380
Titles
8-4 Wave Reflection and Transmission at 
Images
Image 1
Image 2
Image 3
Page 381
Titles
-. r. 0 'k 
8-4.1 Perpendicular Polarization 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 382
Titles
x 
z=o 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 383
Titles
1 •. L=1 +f'l.. (859)1 
(8.60) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 384
Titles
(VIm). 
(VIm). 
8-4.2 Parallel Polarization 
lEt 12 (62)2 
. kl 'In 
E1 =E~ +E~ 
8t = 14S. 
Al = - = 1m 
kl ' 
COSel + ../(c2/c1) - sin28j 
Images
Image 1
Image 2
Image 3
Page 385
Titles
cosBi 
I'll = (I + ['II) -n . (8.67) 
cos 171 
11 rJ2 1J2 
x 
Transmitted Wave 
Reflected Wave 
Images
Image 1
Image 2
Image 3
Image 4
Page 386
Titles
rs.x» 
8-4.3 Brewster Angle 
Os" = sin-I 
(for III = 1l2). (8.12) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 387
Titles
Answer: r .L = -0.48, <~ = 0.52, rll = -0.16, 
8-5 Reflectivity and Transmissivity 
Images
Image 1
Image 2
Image 3
Page 388
Titles
i j IE~ol 
Pr s. A IE~LOI2 A 0 
Pt st IE~LOI2 A 0 
lEt 12 
+ ----='=L. A cos Ot. 
RII + Til = 1, 
~1~~~~X::'>.1~~:~~',~~:,:· '~{~~~~~ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 389
Titles
-(E2/E])cosaj + J(8218» - sin2aj 
(82Iel) cos aj + J (e2/EI) - sin2 OJ 
----r======:;;===- = -0.435. 
I EX81T1ple 8-7: Beam of Light 
Images
Image 1
Image 2
Tables
Table 1
Page 390
Titles
Technology Brief 16: Bar-Code Readers 
Basic Operation 
Images
Image 1
Image 2
Image 3
Page 391
Images
Image 1
Image 2
Page 392
Titles
8-6 Waveguides 
Images
Image 1
Tables
Table 1
Page 393
Titles
y = b .--..,.----..,.---:-:---r----- 
" \ : : : /\./'-+-- 
y = 0 L----\~':r.--/-' ------- ------.. z 
/ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 394
Titles
8- 7 General Relations for E and H 
E = x Ex + y ii, + i E 7.. 
Images
Image 1
Image 2
Image 3
Page 395
Titles
8-8 TM Modes in Rectangular 
k=w,fili. 
ay . 
. ~ Bez .- 
aev ae, .- 
B!J, ahx . _ 
ax ay 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 396
Titles
- --, + - --, + k~ = O. 
k; -b' 
t, = o, 
Images
Image 1
Page 397
Titles
o 
~\t-lj2··\ 
rrltl\\~ 
o~:l:plllr.f=~ 
bdt':l:g~li~ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 398
Titles
f3 = u: 11- (17) 2., (TE and TM) (8.107) 
Ex E\' f3TJ 1- (ff'Il1I1)2 
ZTM = -=- = - ~ = - = 1/ 
Er - - f3 + - + - . 
Example 8·8: Mode Properties 
Images
Image 1
Image 2
Page 399
Titles
- (mn X) (I1n \') "f3 
~ jWJ1 (lin) (mnx) . (/lny) 
x kl; b a b 
~ jfi (/In) (mnx) . (nny) 
~ -jWJ1 (mn) . (lnnx) (nny) 
~" jfi (mn) .' (mnx) . (flny) e-j(3z, 
kc a a b 
8-9 TE Modes in Rectangular Waveguide 
x sin(1.5n x IDIOt - 109nL) 
Images
Image 1
Image 2
Page 400
Images
Image 1
Image 2
Tables
Table 1
Page 401
Titles
401 
\ 
\ 
\ 
~mfO"" 
up = 7i . 
I 
8-10 Propagation Velocities 
Images
Image 1
Image 2
Image 3
Page 402
Titles
(8. I 19b) 
1 JTX 
z =z+-. 
II JTX 
~ WJ.1 (JT) (JTX) 'I< 
, 4 a a 
~ (Wf.J..JT Ho ) 'I isrx ] 'jJ 
Images
Image 1
Image 2
Image 3
Page 403
Titles
- 
Images
Image 1
Image 2
Image 3
Page 404
Titles
CHAPTER 8 WAVE REFLECTlO'J i\\:f) TRi\\:Sl\lISSION 
, .... Cl) Module ~tJ Rectangular \Ya,·eguidl· 
o 
Input 
8-11 
Cavity Resonators 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10
Page 405
Titles
8-] ] .1 Resonant Frequency 
- "/3 '/3 (m7tx) (n7tY) 
- 
o 
---- .4//2 
------- A 
, 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 406
Titles
8-11.2 Quality Factor 
2a 
Example 8-11 : Q of a Resonant Cavity 
- [n x 12.6 x 109 x 4n x 10-7 x 5.8 x 107]1/2 
a 
Q=- 
= 3 x 5.89 X 10-7 ::::::: 9,500. 
Q = 8s [a3(d + 2b) + d3(a + 2b)] 
/',.f ::::::: flO I 
::::::: 1.3 MHz. 
Images
Image 1
Image 2
Page 407
Titles
Chapter 8 Relationships 
407 
_ Eb _ 2112 
r - --,... - ---'---- 
T=I+f 
..;e;; - .j£;; 
..;e;; + .j£;; 
f.l = -.- = ""-------'---- 
T.l = -.- = 
fll=-' =------ 
rll=-j = 
lJsll = sin-I 1 = tan-I rei 
upoJ(m)2 (n)2 (P)2 
Images
Image 1
Image 2
Page 408
Images
Image 1
Page 409
Titles
z=o 
I-d-I 
(Vim). 
PROBLEMS 
* 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 410
Titles
4 
\ 
Images
Image 1
Image 2
Image 3
Page 411
Titles
,. 
-~ 
...... I 
A .. .::: ••• 
T 
1 
fJr = I 
,-d-I 
T 
t 
1 
Images
Image 1
Image 2
Image 3
Image 4
Page 412
Titles
~ 
Images
Image 1
Image 2
Image 3
Page 413
Images
Image 1
Image 2
Page 414
Images
Image 1
Page 415
Titles
Radiation and Antennas 
R 
E 
T 
Objectives 
p 
9 
A 
H 
c 
Chapter Contents 
Images
Image 1
Image 2
Image 3
Page 416
Titles
416 
- 
'" -' '-' 
Incident 
~)) 
Wave launched 
Overview 
Images
Image 1
Image 2
Page 417
Titles
~ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 418
Titles
4lH 
Q = (R, 0, 9) 
.• 
9-1 The Hertzian Dipole 
A=- -- zlodz 
.110 (e-jkR) 
4;r R 
A(R) = 110 f Je J sv' 
4;r R' . 
v' 
(9.1 ) 
(A), 
Images
Image 1
Image 2
Image 3
Image 4
Page 419
Titles
- I - 
jwco 
4rr kR (kR)2 • 
~ lolk2 -kR [ j I j] . 
Eo = -- lJoe J - + -- - -- Sill e 
4lf k R (kR)2 (kR)3 ' 
9-1.1 Far-Field Approximation 
~ A A fLolol (e-jkR) 
Images
Image 1
Image 2
Image 3
Page 420
Titles
Dipole 
9-1.2 Power Density 
Images
Image 1
Image 2
Image 3
Image 4
Page 421
Titles
F(8, ¢) = F(e) = sin2 a. 
•.. 
F(e, ¢) = S(R. e. ¢) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 422
Titles
y 
~CJ.)~t == ====,°=10 II I· • 1 
Module 9.1 
9-2 Antenna Radiation Characteristics 
Images
Image 1
Image 2
Image 3
Image 4
Page 423
Titles
= R2Smax f f F(8, ¢) sin e' de d¢ 
9-2.1 Antenna Pattern 
dA = R2 sin B dB d¢ 
Images
Image 1
Image 2
Image 3
Image 4
Page 424
Titles
o 
~ 
'2- -5 
~ 
~ 
~ 
~ 
s 
9-2.2 Beam Dimensions 
For an isotropic antenna with F (0. ¢) = 1 in all directions, 
Images
Image 1
Image 2
Page 425
Titles
4~ ff F(8, ¢) dQ 
9-2.3 Antenna Directivity 
o 
co 
.£ 
.~ 
;.a -20 
§ 
o 
~ 
-5 70 
'5 80 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 426
Titles
F(D,1') 
Example 9-1: Antenna Radiation Properties 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 427
Titles
Example 9-2: Directivity of a Hertzian Dipole 
4rr 
JJ F(e, » sine de d> 
f f sin3 e de d> 
9-2.4 Antenna Gain 
= f ~ d> = 2rr 
F(e) = cos? e 
Qp = JJ rio. » dQ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 428
Titles
(dimensionless). (9.29) I 
9-2.5 Radiation Resistance 
c 3 x 1O~ 
47rR2 I57r/(~ (/)2 2 2 (1)2 
I"" - 2 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 429
Titles
9-3 Half- Wave Dipole Antenna 
, 
~ ,/ 
1 
/ = ..i12 
L~-'/2 
1 
/= ).12 
1 
Images
Image 1
Image 2
Page 430
Titles
- , 
= Su . 1 
Sma, = So 
15/(? 
9-3. I Directivity of ).,/2 Dipole 
15/0//{COS[(7r/2)cose]}- . 
( -JkR) 
E!! = / dE!!. 
£9 = j6010 (COS[(:i~~ COSO]} (e-~kR), (9.44a) 
- £9 
H9=-· 
Images
Image 1
Image 2
Image 3
Page 431
Titles
I 
T 
).14 
l 
II 
9-3.3 Quarter- Wave Monopole Antenna 
9-3.2 Radiation Resistance of 'A/2 Dipole 
Images
Image 1
Image 2
Page 432
Titles
, 
, 
, 
9-4 Dipole of Arbitrary Length 
Images
Image 1
Image 2
Tables
Table 1
Page 433
Titles
B = -- -- sm e z 
X i: sin[k(l12 - z)] dz 
+ J eJkZCOSOSin[k(l12+Z)ldzj. 
see) = IEel2 = 15/J [cos (¥ cose) - cos (¥)]2 
(c) /=3AI2 
Images
Image 1
Image 2
Image 3
Image 4
Page 434
Titles
Technology Brief 17: Health Risks of EM Fields 
Physiological Effects of EMFs 
Images
Image 1
Image 2
Page 435
Titles
- 
Bottom Line 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 436
Titles
E~ 
:;;: -€. 100 
~ i 10 
Images
Image 1
Image 2
Image 3
Image 4
Tables
Table 1
Table 2
Page 437
Titles
Data 
I 
:q 
I 
Set Antenna Parameters 
Images
Image 1
Image 2
Image 3
Image 4
Page 438
Titles
- ~ 
IEd- IEd- 
9-5 Effective Area of a Receiving 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 439
Titles
R 
9-6 Friis Transmission Formula 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 440
Titles
Pree = --- = --------- 
Example 9·4: Satellite Communication System 
10 =---~- 
9-7 Radiation by Large-Aperture 
Images
Image 1
Image 2
Page 441
Images
Image 1
Image 2
Image 3
Image 4
Page 442
Titles
442 
---- 
---- 
---- 
Ya 
I R ::! uP Il, (9.73) I 
Images
Image 1
Page 443
Titles
E(R, e, ¢) =;: -R- u», ¢), 
h(e)= I 
sinor i, sin () / A) 
= Eo . -L; 
2Eo/\ 
~ 2Eolv 
A 
smc r = - . 
S(R,e,¢)= ' .'1' 'I' 
9-8 Rectangular Aperture with Uniform 
Images
Image 1
Image 2
Image 3
Image 4
Page 444
Titles
444 CHAPTER 9 RADIATION AND ANTENNAS 
9-8.1 Beamwidth 
(9.87) 
(9.80) 
(9.85) 
. A 
smfh = 0.44 - . 
Ix 
nl, . 
T SIn H2 = 1.39, 
-I 30 I 
Y = (lx/A) sin () - 
I Pu = 2Ill " 2 sin 0, = 0.88/: 
F(fJ) = S(R. e) 
Smax 
Images
Image 1
Image 2
Tables
Table 1
Page 445
Titles
9-8.2 Directivity and Effective Area 
txt 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 446
Titles
9-9 Antenna Arrays 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Tables
Table 1
Page 447
Titles
'r 
447 
l~. 1 I ~ 1 
Se(R, 0, ¢) = -IEe(H. e, ¢lI" = --21.t~((1. ¢)I". 
2r}o 2rJoR 
(9.94) 
(9.93) 
Images
Image 1
Image 2
Page 448
Titles
= L Ai T !cW, cp), 
Ej(Rj, e, cp) = Aj -- Ie(e, cp). 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 449
Titles
Q 
• 
id 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Page 450
Titles
450 
~--)j2--~ 
y 
x 
ao= I 
f 
1 
Figure 9-28: Two half-wave dipole array of Example 9-5. 
2(T( T() 
S(R,e)=SOFa(e)=4S0COS "2cose-4" . 
II + ejxl2 = lejx/2(e-jx/2 + ejx/2)12 
'. 71 [e-jx/2 + ejx/2112 
= leJ~/21- 2 ---:---- 
= cos e' - - = 0 
S(R,e) ?(n n) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 451
Titles
J 
D 
Images
Image 1
Image 2
Tables
Table 1
Page 452
Titles
-----<__.-+-- ...•.. -_ z (East) 
d 
~I 
~--------~~---------'~z 
Images
Image 1
Image 2
Image 3
Image 4
Page 453
Titles
9-10 N-ElementArray with Uniform 
).. 
. 2 (n ) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 454
Titles
= 
= 11 + ejYl2, 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 455
Titles
9-10 N-ELEMENT ARRAY WITH UNIFORM PHASE DISTRIBUTION 
z 
455 
Images
Image 1
Image 2
Image 3
Page 456
Titles
9-11 Electronic Scanning of Arrays 
Images
Image 1
Image 2
Image 3
Image 4
Page 457
Titles
9-11.1 Uniform-Amplitude Excitation 
z 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 458
Titles
(9.122) 
9-1 1.2 Array Feeding 
458 
Images
Image 1
Image 2
Image 3
Image 4
Page 459
Titles
noup 
Page 460
Titles
o 2noJr (/).f. ) (f - 10 GHZ) 
Images
Image 1
Image 2
Page 461
Titles
/O.s 
I(is 
Images
Image 1
Image 2
Image 3
Page 462
Titles
Chapter 9 Relationships 
).3D 
Ae = -.- 
Rrad ~ 73 Q 
H¢=- 
S(R, e) = 71' R2 sin2 e 
H¢=- 
S(R, e) = 20 2 sin2 e 
x ). 
i. y 
D---"'-- 
.. 2nd 
Images
Image 1
Image 2
Image 3
Page 463
Titles
CHAPTER HIGHLIGHTS 
GLOSSARY OF IMPORTANT TERMS 
Page 464
Titles
rt«. ¢) = { ~: 
rte, ¢) = I 
PROBLEMS 
Images
Image 1
Image 2
Page 465
Titles
for 0 < z ::: 1/2, 
fez) = { 100 - Zz] I), 
Images
Image 1
Image 2
Image 3
Image 4
Page 466
Titles
I 
1 
I 
I 
----------- 5 km -----------1 
I-d-I 
(a) d = ),,/4, 
Images
Image 1
Image 2
Image 3
Page 467
Titles
i!(N - j - I)! 
Images
Image 1
Image 2
Tables
Table 1
Page 468
Titles
Satellite Communication Systems 
10 
R 
E 
T 
p 
A 
H 
c 
Chapter Contents 
Objectives 
Images
Image 1
Image 2
Page 469
Titles
---.I!L.'--~ ."" 
Satellite Communication Systems 
10-1 
Application Examples 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 470
Titles
Ro 
G --,- = Msw· Ro. 
W 
_ [GMeJ1!3 
Images
Image 1
Image 2
Image 3
Page 471
Titles
10-2 Satellite Transponders 
Images
Image 1
Tables
Table 1
Page 472
Titles
• 
• 
---------------------, 
•... 
g I~ --
~ I~----i 
~ . 
:; 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Tables
Table 1
Page 473
Titles
~..n 
~ ~~ '0 r:; 
~ 'fJ,9' 
10-3 Communication-Link Power 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 474
Titles
10-4 Antenna Beams 
(10.9) 
(10.8) 
Pri = 1(8) r; = 1(8) PICICr (~)2 
(10.11) 
(10. I 2) 
Images
Image 1
Image 2
Image 3
Image 4
Page 475
Titles
10-5 RADAR SENSORS 
10-5 Radar Sensors 
Images
Image 1
Image 2
Image 3
Page 476
Titles
10-5.1 Basic Operation of a Radar System 
10-5.2 Unambiguous Range 
Images
Image 1
Image 2
Image 3
Page 477
Titles
(to. 15) 
2R) 2R/ 
--- ~ -- + r. 
e c 
----- R 
J- - - - - - ~..,.. 
-- 
_-\----R~~- 
.....•... - 
10-5.3 Range and Angular Resolutions 
/ 
2R 
T=-, 
I----r-I 
cTp c 
Ru= - = -. (10.14) 
2 2/p 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 478
Titles
\ ---------1 
==_-.-_-_l_-_- - - - RAx=fJR 
J --- 
---------- 
( 
10-6 Target Detection 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Page 479
Titles
479 
(10.24) 
(10.22) 
[ p.G2J...2a. JI/4 
(10.21) 
(10.18) 
- - - 
--- 
- - 
--- 
- - - 
--- 
--- 
r; 
r.o», 
Prer = Stat = --2 (W). (10.20) 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 480
Titles
1.\ 
Ic=Tc+T«. 
r: 
10-7 Doppler Radar 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 481
Titles
10-8 Monopulse Radar 
1 E3-
Images
Image 1
Image 2
Image 3
Page 482
Titles
(a) 
1--------1 
3--------' 
4------ . 
~ u 
"", 
-, 
'\'; 
/ 
- - - -~- 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Page 483
Titles
~-- 
. efC: ;:~ 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Page 484
Titles
41T2 
Chapter 10 Relationships 
2 2fp 
_ Prj _ i(e) PtGtGr (_)..._)2 
Sn- ------ 
Pni KTsysB 41T R 
!:ix = {3R 
P _ t t 
r - (41T)3 R4 
Ur 2u 
fd = -2- = -- cos s 
Page 485
Titles
CHAPTER HIGHLIGHTS 
GLOSSARY OF IMPORTANT TERMS 
PROBLEMS 
Page 486
Page 487
Titles
and Abbreviations 
x 
I 
D 
N 
A 
E 
p 
p 
A 
Symbols, Quantities,Units, 
Images
Image 1
Image 2
Image 3
Tables
Table 1
Page 488
Images
Image 1
Tables
Table 1
Page 489
Tables
Table 1
Page 490
Images
Image 1
Tables
Table 1
Page 491
Titles
A 
p 
p 
E 
N 
D 
I 
x 
B 
Material Constants of Some 
Common Materials 
Images
Image 1
Image 2
Tables
Table 1
Page 492
Titles
MATERIAL CONSTANTS OF SOME COMMON MATERIALS 
APPENDIX B 
492 
Images
Image 1
Tables
Table 1
Table 2
Page 493
Titles
Mathematical Formulas 
x 
I 
D 
E N 
C 
p 
p 
A 
. (x + V) (x - v) 
(X + v) (x - y) 
Trigonometric Relations 
Images
Image 1
Image 2
Image 3
Page 494
Titles
cos x = 1 - - + - + ... :::: 1 - - 
Images
Image 1
Page 495
Titles
x 
I 
D 
N 
D 
E 
p 
A P 
Answers to Selected Problems 
1.3 A = 10 cm 
Chapter 1 
Images
Image 1
Image 2
Image 3
Image 4
Image 5
Page 496
Titles
Chapter 2 
2.37 I = )..14 + 11)..12 
Chapter 3 
• IA(l. -1. 2)1 Y 
Page 497
Titles
c 
Chapter 4 
Images
Image 1
Page 498
Titles
Chapter 5 
Chapter 6 
Chapter 7 
Images
Image 1
Image 2
Page 499
Titles
Chapter 8 
Chapter 9 
Images
Image 1
Page 500
Titles
Chapter 10 
Images
Image 1
Page 501
Images
Image 1
Page 502
Images
Image 1
Page 503
Titles
A 
503 
Images
Image 1
Page 504
Titles
504 
B 
c 
INDEX 
Images
Image 1
Page 505
Titles
INDEX 
o 
E 
505 
Images
Image 1
Page 506
Titles
506 
F 
INDEX 
Page 507
Titles
G 
H 
J 
507 
Images
Image 1
Page 508
Titles
508 
K 
L 
M 
INDEX 
Images
Image 1
Page 509
Titles
INDEX 
N 
o 
p 
509 
Images
Image 1
Page 510
Titles
510 
Q 
A 
s 
INDEX 
Images
Image 1
Image 2
Page 511
Titles
INDEX 
T 
511 
Images
Image 1
Page 512
Titles
512 
u 
v 
w 
x 
z 
Page 513
Titles
.•. 
Images
Image 1