logo资料库

2009年上海市中考数学真题及答案.doc

第1页 / 共9页
第2页 / 共9页
第3页 / 共9页
第4页 / 共9页
第5页 / 共9页
第6页 / 共9页
第7页 / 共9页
第8页 / 共9页
资料共9页,剩余部分请下载后查看
2009 年上海市中考数学真题及答案 (满分 150 分,考试时间 100 分钟) 考生注意: 1.本试卷含三个大题,共 25 题; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一 律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或 计算的主要步骤. 一、选择题:(本大题共 6 题,每题 4 分,满分 24 分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题 纸的相应位置上.】 1.计算 3 2 )a 的结果是( ( ) A. 5a B. 6a C. 8a D. 9a 2.不等式组 A. x   1 , 的解集是( 1 0 x       2 1 x  B. 3x  x  x 3.用换元法解分式方程 3 x x  整式方程,那么这个整式方程是( 1  1 )    3x C. 1 1 0   时,如果设 1x    D. 3 y  ,将原方程化为关于 y 的 1x  x ) A. 2 y y   3 0 B. 2 3 y y 1 0   C. 23 y y   1 0 D. 23 y y   1 0 4.抛物线 y  2( x m  ) 2  ( m n, 是常数)的顶点坐标是( n ) A.( )m n, B.( )m n  , C.( m n, ) D.(  m n , ) 5.下列正多边形中,中心角等于内角的是( ) A.正六边形 B.正五边形 C.正四边形 C.正三边形 ∥ ∥ ,那么下列结论正确的是( ) 6.如图 1,已知 AB CD EF  A. B. C. D.  AD BC DF CE CD BC EF BE  BC DF CE AD CD AD EF AF  二、填空题:(本大题共 12 题,每题 4 分,满分 48 分) A C E B D F 图 1
【请将结果直线填入答题纸的相应位置】 7.分母有理化:. 1 5  8.方程 x   的根是 1 1 . 9.如果关于 x 的方程 2 x 1  10.已知函数 ( ) f x  ,那么 (3) f  x 11.反比例函数 y  图像的两支分别在第 . 象限. 1 2 x 2    ( k 为常数)有两个相等的实数根,那么 k  x k 0 . 12.将抛物线 y x 向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式 . . 是 13.如果从小明等 6 名学生中任选 1 名作为“世博会”志愿者,那么小明被选中的概率 是 14.某商品的原价为 100 元,如果经过两次降价,且每次降价的百分率都是 m ,那么该商 品现在的价格是 15.如图 2,在 ABC△ 中, AD 是边 BC 上的中线,设向量 , 元(结果用含 m 的代数式表示). A   AB a   BC b = .  ,b  ,那么 AD  表示向量 AD  如果用向量 a 16.在圆O 中,弦 AB 的长为 6,它所对应的弦心距为 4,那么半 径OA  17.在四边形 ABCD 中,对角线 AC 与 BD 互相平分,交点为 O .在不添加任何辅助线的前提下,要使四边形 ABCD 成为矩形, 还需添加一个条件,这个条件可以是 . 18.在 Rt ABC△ 3 M , 为边 BC 上的 点,联结 AM (如图 3 所示).如果将 ABM△ 沿直线 AM 翻折 后,点 B 恰好落在边 AC 的中点处,那么点 M 到 AC 的距离 是 °, BAC AB 中, 90  .  B A D 图 2 C B M 图 3 C 三、解答题:(本大题共 7 题,满分 78 分) 19.(本题满分 10 分) 计算: 2 a a 2  1   ( a 1)   a  2 1  2 a  1 2 a . 20.(本题满分 10 分) 1 x   , 2 x xy    解方程组: y 2    2 0 ① ② .
21.(本题满分 10 分,每小题满分各 5 分) 如图 4,在梯形 ABCD 中, (1)求 tan ACB 的值; (2)若 M N、 分别是 AB DC、 的中点,联结 MN ,求线段 MN 的长. A AD BC AB DC ∥ ,   8 , BC 60 °, B    12 ,联结 AC . D B C 图 4 22.(本题满分 10 分,第(1)小题满分 2 分,第(2)小题满分 3 分,第(3)小题满分 2 分,第(4)小题满分 3 分) 为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别 抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示; 各年级的被测试人数占所有被测试人数的百分率如图 5 所示(其中六年级相关数据未标出). 次数 人数 0 1 1 1 2 2 3 2 5 4 4 3 表一 6 2 7 2 8 2 9 0 10 1 ; 根据上述信息,回答下列问题(直接写出结果): ( 1 ) 六 年 级 的 被 测 试 人 数 占 所 有 被 测 试 人 数 的 百 分 率 是 (2)在所有被测试者中,九年级的人数是 (3)在所有被测试者中,“引体向上”次数不小于 6 的人数所 占的百分率是 (4)在所有被测试者的“引体向上”次数中,众数是 ; ; . 八年级 25% 九年级 30% 七年级 25% 六年级 图 5 O E F D C 23.(本题满分 12 分,每小题满分各 6 分) 已知线段 AC 与 BD 相交于点O ,联结 AB DC、 ,E 为OB 的中点, F 为OC 的中点,联结 EF (如图 6 所示). (1)添加条件 A 求证: AB DC .    , OEF OFE   D  , A B    ”记为①,“ OEF (2)分别将“ A ”记为③, 添加条件①、③,以②为结论构成命题 1,添加条件②、③,以①为结论构成命题 2.命题 1 是 命题(选择“真”或“假”填入空格). 命题,命题 2 是 OFE   D  图 6 ”记为②,“ AB DC
24.(本题满分 12 分,每小题满分各 4 分) 在直角坐标平面内,O 为原点,点 A 的坐标为 (1 0), ,点C 的坐标为 (0 4), ,直线CM x∥ 轴(如图 7 所示).点 B 与点 A 关于原点对称,直线 y   (b 为常数)经过点 B ,且 x b 与直线CM 相交于点 D ,联结OD . (1)求b 的值和点 D 的坐标; (2)设点 P 在 x 轴的正半轴上,若 POD△ 角形,求点 P 的坐标; (3)在(2)的条件下,如果以 PD 为半径的圆 P 与 圆O 外切,求圆O 的半径. 是等腰三 y C 4 3 2 1 O B 1 A 1 图 7 y x b   D M 25.(本题满分 14 分,第(1)小题满分 4 分,第(2)小题满分 5 分,第(3)小题满分 5 分) 已知  ABC  90 °, AB  2 , BC  3 , ∥ , 为线段 BD 上的动点,点 Q 在射线 AD BC P AB 上,且满足 PQ AD PC AB  (如图 8 所示). (1)当 AD  ,且点Q 与点 B 重合时(如图 9 所示),求线段 PC 的长; 2 (2)在图 8 中,联结 AP .当 AD  ,且点Q 在线段 AB 上时,设点 B Q、 之间的距离 3 2 △ 为 x , APQ PBC S S △  y ,其中 APQ S△ 表示 APQ△ 的面积, PBC S△ 表示 PBC△ 的面积,求 y 关 于 x 的函数解析式,并写出函数定义域; (3)当 AD AB ,且点Q 在线段 AB 的延长线上时(如图 10 所示),求 QPC A Q B D P A D P 图 8 C B(Q) ) 图 9 A B Q C P 图 10 的大小. D x C
参考答案: 一.选择题:(本大题共 6 题,满分 24 分) 1. B; 2.C; 3.A; 4.B; 5.C; 6.A. 1、 2、解:解不等式①,得 x>-1,解不等式②,得 x<3,所以不等式组的解集为-1<x<3, 故选 C. 3、 4、 5、 6、 二.填空题:(本大题共 12 题,满分 48 分) 7. ; ; 8. 2x 解:由题意知 x-1=1,解得 x=2. 9.1 4 ; 10. 1 2 ; 11.一、三;
y x 2 1  ; 12. 解:由“上加下减”的原则可知,将抛物线 y=x2-2 向上平移一个单位后,得以新的抛物线, 那么新的抛物线的表达式是,y=x2-2+1,即 y=x2-1. 故答案为:y=x2-1. 13. 1 6 ; 解:因为从小明等 6 名学生中任选 1 名作为“世博会”志愿者,可能出现的结果有 6 种,选 中小明的可能性有一种,所以小明被选中的概率是 1/ 6 . 100 1( m 2) ; 14. 解:第一次降价后价格为 100(1-m),第二次降价是在第一次降价后完成的,所以应为 100 (1-m)(1-m), 即 100(1-m)2. 1 ; 2 15.  b  a 解:因为向量 AB = a , BC = b ,根据平行四边形法则,可得: AB = a , BC = b , AC = AB + BC =a+b,又因为在△ABC 中,AD 是 BC 边上的中线,所以 16. 5 ;   90 等); ABC  17. AC BD (或 解:∵对角线 AC 与 BD 互相平分, ∴四边形 ABCD 是平行四边形, 要使四边形 ABCD 成为矩形, 需添加一个条件是:AC=BD 或有个内角等于 90 度. 18. 2 . 三.解答题:(本大题共 7 题,满分 78 分)
19.解:原式= 20.解:由方程①得  ( a  1 )1 1  a  2)1 )(1  ( a  ··········································· (7 分) (2 )1 a  1 a  2 a 1 a  a  ··············································································· (1 分) 1  ········································································ (1 分) a 1 1    = = a 1 a y 0 2)1  将③代入②,得 整理,得 x  解得 1 x 分别将 1 = 1 . ················································································· (1 分) 1 x , ③ ························································· (1 分) 2 2 ( xx x  ,··········································· (1 分) 2 2 0 x  x ,······························································ (2 分) 2 1 x  , ,···································································(3 分) 2 2 1   , , ·························· (2 分) y 代入③,得 1 x x   所以,原方程组的解为 1 2    y y  1 BC ,垂足为 E .············································ (1 分) 60  , cos 60  , ··············································· (1 分) ····································· (1 分) 3 y ,  2 1   , 0.  AE  B  8  8AB , 4 2 , 3 ; AB x 2 0 2 21.解:(1) 过点 A 作 在 Rt △ ABE 中,∵ B ∴ cos BE   AE  AB  12BC sin B ,∴ 60  sin 8  .···················································(1 分) 8EC . ································································ (1 分) 34 ∵ 在 Rt △ AEC 中, tan  ACB .···································· (1 分) .········································································· (1 分)  AE EC AB   34 8  3 2  60  , , B  DC 60 BC B  DF  BC (2) 在梯形 ABCD 中,∵ DCB ∴ 过点 D 作 ∵ 在 Rt △ DCF 中, FC ∴  AD // ,∴四边形 AEFD 是平行四边形.∴ 8   ,垂足为 F ,∵ cos DC 4AD DCF  . FC 4  .∴ DFC EC EF     ∵ M 、 N 分别是 AB 、 DC 的中点,∴ MN  AEC  AD  60 cos AE // 90  ,∴ EF . ·····················(1 分) 4  , ···················· (1 分) DF . BC AD  2  4 12  2  8 .········(2 分) 22.(1) %20 ; ·················································································· (2 分) (2) 6 ; ···················································································· (3 分) (3) %35 ; ················································································· (2 分) (4) 5 . ······················································································· (3 分) , OF OFE OEF  .···································································· (1 分)  23.(1) 证明: OE  ∴ ∵ E 为OB 的中点, F 为OC 的中点, ∴ ∴ ∵ ∴△ AOB ≌△ DOC .·························································(2 分) AB  .···································································· (1 分) . ············································· (1 分) , .···································································· (1 分) , OB 2 OE OB  OC A  D AOB  OC 2 DOC DC OF  ,
(2) 真;·························································································(3 分) 假.···························································································· (3 分) 24.解:(1) ∵点 A的坐标为 (1 0), ,点 B 与点 A 关于原点对称, y  ∴点 B 的坐标为 ( 1 0) ∵直线 ∵点C 的坐标为 (0 4), ,直线 ∵直线 bx 1 x y 0 1   , .··································································(1 分) b ,得 1b .····························(1 分) 经过点 B ,∴ CM // 轴,∴设点 D 的坐标为 ( 4)x, . ······· (1 分) x 与直线CM 相交于点 D ,∴ 3x .∴ D 的坐标为 (3 4), .…(1 分) 5OD .················································(1 分) 时,点 P 的坐标为 (6 0), ; ····································· (1 分) 时,点 P 的坐标为 (5 0), , ······································(1 分) (2) ∵ D 的坐标为 (3 4), ,∴ 当 当 当 ∴ PD PO PO   OD  OD PD ( x  x 5 5 时,设点 P 的坐标为 ( 0)x, )3 ,得 4   2 2 25x 6 ( x )0 , ,∴点 P 的坐标为 25( 6 0) , .············ (1 分) 综上所述,所求点 P 的坐标是 (6 0), 、 (5 0), 或 (3) 当以 PD 为半径的圆 P 与圆O 外切时, 25( 6 0) , . 5PD 若点 P 的坐标为 (6 0), ,则圆 P 的半径 ∴圆O 的半径 1r .······································································(2 分) 若点 P 的坐标为 (5 0), ,则圆 P 的半径 ∴圆O 的半径 综上所述,所求圆 O 的半径等于1或 . ···························································(2 分) 525 r 52PD 525  6PO 5PO ,圆心距 ,圆心距 , , . DBC .∴ ADB  ADB  . ················································· (1 分) DBC  ABD .  . ,点Q 与点 B 重合,∴ .·······························································(1 分) . ·········································································· (1 分) PQ PC PB PBC  .   23 2 3  cos 45  .····················· (1 分) ,垂足分别为 E 、 F .···················· (1 分) .∴四边形 FBEP 是矩形. 25.解:(1) ∵ AD // , ∴  BC ,∴ .∴  ABD   45 PBC  AD  AB 45   ∵ ∵ ∵ ∴ ∴ AD ABC  PQ  PC PCB  BPC  2  AB 90   AD AB  90  , (2) 过点 P 作 在 Rt △ BPC 中, PE  FBE PE  PFB ∴ ∴ C AB 90    cos PC BC PF  BC , BEP   BF . PF // AD .∴   PF // , BC AD // ,∴ BC 3AD 2 AB ,   AQ S S   APQ PBC ∵ ∵ ∵ ∴ AD AB . PF  BF 3 4 2AB ,∴ PF PE 2 , x QB  3BC ,∴ .················································ (1 分) S △ APQ  x 2  2 PF , S △ PBC  3 2 PE .  2 x  4 ,即 y  2 x  4 . ················································· (2 分)
分享到:
收藏