logo资料库

ARIMA模型 Python.pdf

第1页 / 共64页
第2页 / 共64页
第3页 / 共64页
第4页 / 共64页
第5页 / 共64页
第6页 / 共64页
第7页 / 共64页
第8页 / 共64页
资料共64页,剩余部分请下载后查看
TIME SERIES ANALYSIS WITH PYTHON Aileen Nielsen July, 13, 2016 aileen.a.nielsen@gmail.com
INSTALLATION INSTRUCTIONS • Please install Conda per ‘quick install’ instructions: http://conda.pydata.org/docs/install/quick.html • Make sure you have the following packages installed: • • • • • pandas numpy Statsmodels scikit-learn scipy • These would be good to have but are not essential: • • pytz hmmlearn
OUTLINE • Why time series? • Quick Pandas intro • Dealing with dates in Pandas • Reading + manipulating time-stamped data • Common time series analytical tools • Prediction • Classification
CAVEATS • Time series analysis is a particularly tricky & controversial field • I’ll give some background as we move ahead, but you need to read more when you want to do a real analysis • Tests for goodness of fit, etc, are particularly error prone in time series analysis • Whenever I don’t specify, but should, assume it’s iid normally distributed (‘error’ terms)
WHAT’S SPECIAL ABOUT TIME SERIES?
WHERE DO TIME SERIES POP UP? • Many of the most controversial questions arise from time series analysis • Whenever we want to know the future, we’re pretty much stuck with time series analysis • Ditto for thinking about causality in ‘natural experiments’ http://www.amstat.org/publications/jse/v21n1/witt.pdf http://www.forbes.com/sites/neilhowe/2015/05/28/whats-behind-the-decline-in- crime/#3e1e6be07733
SPEECH RECOGNITION http://www.amstat.org/publications/jse/v21n1/witt.pdf http://www.forbes.com/sites/neilhowe/2015/05/28/whats-behind-the-decline-in- crime/#3e1e6be07733
PHYSICS EXPERIMENTS
分享到:
收藏