logo资料库

Bridges, Routers, Switches and Internetworking Protocols.pdf

第1页 / 共518页
第2页 / 共518页
第3页 / 共518页
第4页 / 共518页
第5页 / 共518页
第6页 / 共518页
第7页 / 共518页
第8页 / 共518页
资料共518页,剩余部分请下载后查看
Cover
Content
Chapter 1. Essential Networking Concepts
1.1 Layers
1.2 Service Models
1.3 Important Properties of a Network
1.4 Reliable Data Transfer Protocols
Homework
Chapter 2. Data Link Layer Issues
2.1 Generic LANs
2.1.1 What Is a LAN?
2.1.2 Taking Turns
2.2 IEEE 802 LANs
2.3 Names, Addresses, Routes
2.4 LAN Addresses
2.5 Multicast versus Unicast Addresses
2.6 The Broadcast Address
2.7 Multiplexing Field
2.8 Bit Order
2.9 Logical Link Control
2.10 Issues in 802.3
2.11 Issues in 802.5
2.12 Packet Bursts
2.13 Reasons for Bridges
2.14 Point-to-Point Links
Homework
Chapter 3. Transparent Bridges
3.1 The No-Frills Bridge
3.2 The Learning Bridge
3.3 Spanning Tree Algorithm
3.3.1 Configuration Messages
3.3.2 Calculation of Root ID and Cost to Root
3.3.3 Selecting Spanning Tree Ports
3.3.4 An Example
3.4 Spanning Tree Algorithm Refinements
3.4.1 Failures
3.4.2 Avoiding Temporary Loops
3.4.3 Station Cache Timeout Values
3.4.4 Networkwide Parameters
3.4.5 Port ID
3.4.6 Assigning Port Numbers
3.4.7 Performance Issues
3.4.8 One-way Connectivity
3.4.9 Settable Parameters
3.5 Bridge Message Formats
3.5.1 Configuration Message Format
3.5.2 Topology change notification format
3.6 Other Bridge Issues
3.6.1 Multiply Connected Stations
3.6.2 Configuration of Filtering
3.6.3 Not Quite Transparent
3.7 Remote Bridges
Homework
Chapter 4. Source Routing Bridges
4.1 Pure Source Routing
4.1.1 The Routing Header
4.1.2 Bridge Numbers
4.1.2.1 Internal LAN Number
4.1.2.2 The Route
4.1.2.3 Reasons for Parallel Bridges
4.1.3 Bridge Algorithms
4.1.3.1 Transparent Packets
4.1.3.2 Specifically Routed Packets
4.1.3.3 All Paths Explorer Packets
4.1.3.4 Spanning Tree Explorer Packets
4.2 SR-TB Bridges
4.2.1 Packets from a TB Port
4.2.2 Packets from an SR Port
4.2.3 Loops
4.3 SRT Bridges
4.4 End-system Algorithms
4.4.1 When to Find a Route
4.4.2 How to Find a Route
4.4.2.1 Route Finding Strategy 1
4.4.2.2 Route Finding Strategy 2
4.4.2.3 Route Find Strategy 3
4.4.2.4 Route Finding Strategy 4
4.4.2.5 Route Finding Strategy 5
4.4.2.6 Route Finding Strategy 6
4.4.3 Route Discovery by the Destination
4.4.4 Route Selection
4.5 Source Routing versus Transparent Bridging
4.5.1 Bandwidth Overhead
4.5.2 Ease of Configuration
4.5.3 Universality
4.5.4 Cost and Performance of Bridges
4.6 Ideas for Improving Source Route Bridging
4.6.1 Autoconfiguration with Source Route Bridging
4.6.2 Fixing the Exponential Overhead
Homework
Chapter 5. Hubs, Switches, Virtual LANs, and Fast Ethernet
5.1 Hubs
5.1.1 The Learning Hub and Security
5.1.2 Store-and-Forward and Spanning Tree
5.1.3 Mixing Layer 1 and 2 Switches
5.1.4 Products versus Standards, Layer 1 versus Layer 2
5.2 Faster LANs
5.3 Virtual LANs (VLANs)
5.3.1 Why VLANs?
5.3.2 Mapping Ports to VLANs
5.3.3 Example: VLAN Forwarding with Separate Router
5.3.4 Example: VLAN Forwarding with Switch as Router
5.3.5 Dynamic Binding of Links to VLANs
5.3.6 Dynamic VLAN Binding, Switch-Switch
Homework
Chapter 6. Network Interface: Service Models
6.1 What Is the Network Layer?
6.2 Network Service Types
6.2.1 Performance Guarantees
6.2.2 Sample Service Model Choices
6.2.3 Hybrid Schemes
6.2.4 Connectionless versus Connection-oriented
Homework
Chapter 7. Connection-oriented Nets: X.25 and ATM
7.1 Generic Connection-oriented Network
7.2 X.25: Reliable Connection-oriented Service
7.2.1 The Basic Idea
7.2.2 Virtual Circuit Numbers
7.2.3 Call Setup
7.2.4 Data Transfer
7.2.5 Flow Control
7.2.6 Facilities
7.2.7 Call Release
7.2.8 Interrupts
7.3 Implementing X.25 Inside the Net
7.3.1 Circuit Method
7.3.2 Reliable Connections over Datagrams Method
7.3.3 Comparison
7.4 Asynchronous Transfer Mode
7.4.1 Cell Size
7.4.2 Virtual Circuits and Virtual Paths
7.4.3 ATM Service Categories
7.4.4 ATM Cell Header Format
7.4.5 Setting Up and Releasing Calls
7.4.6 ATM Adaptation Layers
7.4.6.1 AAL1
7.4.6.2 AAL3/4
7.4.6.3 AAL5
Homework
Chapter 8. Generic Connectionless Service
8.1 Data Transfer
8.2 Addresses
8.3 Hop Count
8.4 Service Class Information
8.4.1 Priority
8.4.2 Bandwidth Reservation and Service Guarantees
8.4.3 Special Route Computation
8.5 Network Feedback
8.6 Fragmentation and Reassembly
8.7 Maximum Packet Size Discovery
Homework
Chapter 9. Network Layer Addresses
9.1 Hierarchical Addresses with Fixed Boundaries
9.2 Hierarchical Addresses with Flexible Boundaries
9.3 Owning versus Renting Addresses
9.4 Types of Addresses
9.5 IP
9.5.1 IP Address Conventions
9.5.2 Text Representation of IP Addresses
9.6 IPX
9.6.1 Privacy Issue with Unique IDs
9.6.2 Ugly Rumors about IPX
9.6.3 Administering IPX Addresses
9.6.4 Internal IPX Network Numbers
9.7 IPX+
9.8 IPv6
9.8.1 The IPv6 Version Number Story
9.8.2 Written Representation of IPv6 Addresses
9.8.3 Written Representation of IPv6 Prefixes
9.8.4 EUI-64
9.8.5 EUI-64 As Used by IPv6
9.8.6 IPv6 Address Conventions
9.8.7 Transition from IPv4 to IPv6
9.9 CLNP Network Layer Addresses
9.9.1 Autoconfiguration
9.9.2 Embedded DTE Addresses
9.10 AppleTalk Network Layer Addresses
9.11 DECnet Phases III and IV
9.11.1 A Bit of History
9.11.2 DECnet Phase IV Address
9.11.3 Mapping DECnet Address to Ethernet Address
9.12 NAT/NAPT
Homework
Chapter 10. Connectionless Data Packet Formats
10.1 Pieces of a Connectionless Network Layer
10.2 Data Packets
10.3 Summary of Packet Formats for Easy Reference
10.3.1 IP
10.3.2 IPX
10.3.3 IPX+
10.3.4 AppleTalk
10.3.5 IPv6
10.3.6 DECnet
10.3.7 CLNP
10.4 Technical Issues and Comparisons in Data Packet Formats
10.4.1 Destination Address
10.4.2 Source Address
10.4.3 Destination and Source Sockets
10.4.4 Header Length
10.4.5 Packet Length
10.4.6 Header Checksum
10.4.7 Fragmentation Allowed
10.4.8 Packet Identifier
10.4.9 Fragment Offset
10.4.10 Prefragmentation Length
10.4.11 More Fragments Follow
10.4.12 Lifetime
10.4.13 Version
10.4.14 Padding
10.4.15 Protocol
10.4.16 Type
10.4.17 Error Report Requested
10.4.18 Congestion Feedback: Source Quench versus DEC Bit
10.4.19 Type of Service
10.4.19.1 TOS Field in IPv4
10.4.19.2 TOS in CLNP
10.4.19.3 TOS in IPX, AppleTalk, and DECnet
10.4.19.4 New Ideas for TOS
10.4.20 Options
10.4.20.1 Options in CLNP
10.4.20.2 Options in IP
10.5 Source Routing
10.5.1 Loose versus Strict Source Routing
10.5.2 Overwriting a Source Route with an Outgoing Link Address
10.5.3 Overwriting a Destination Address with a Next Source Route
10.5.4 A Security Flaw with the Source Route Option
10.6 The Great IPX Frame Format Mystery
10.6.1 IPX's Four Frame Formats
10.6.2 Dealing with Multiple IPX Frame Formats
10.7 Error Reports and Other Network Feedback to the Endnode
10.7.1 CLNP Error Messages
10.7.2 ICMP: IP Error Messages
10.7.3 IPv6 Error Messages
Homework
Chapter 11. Neighbor Greeting and Autoconfiguration
11.1 Endnodes Attached via Point-to-Point Links
11.2 Endnodes Attached via LANs
11.2.1 ES-IS: The CLNP Solution
11.2.2 The IP Solution
11.2.2.1 IP: Finding Neighbors' Layer 2 Addresses
11.2.2.2 ARP/RARP Message Format
11.2.2.3 Redirect Messages
11.2.2.4 IP: Endnode Autoconfiguration
11.2.3 The IPX Solution
11.2.4 The DECnet Solution
11.2.5 The AppleTalk Solution
11.2.5.1 Knowing Who Is on Your LAN
11.2.5.2 Finding a Router
11.2.5.3 Acquiring an AppleTalk Address
11.2.5.4 Seed Routers
11.2.5.5 Some Wrinkles
11.2.5.6 Finding the Best Router for a Given Destination
11.2.6 The IPv6 Solution
11.2.7 Review and Comparisons
11.2.7.1 Endnodes Acquire a Layer 3 Address
11.2.7.2 Router Finds Out Layer 3 Addresses of Endnode Neighbors
11.2.7.3 Router Finds Out Layer 2 Addresses of Endnode Neighbors
11.2.7.4 Endnodes Find a Router
11.2.7.5 Endnode Neighbors Send Directly to Each Other
11.2.7.6 Finding the Best Router
11.2.7.7 Routerless LAN
11.2.8 Comparisons
11.2.8.1 ES-IS versus ARP
11.3 Endnodes Attached via Nonbroadcast Multiaccess Media
11.3.1 Various Solutions
11.3.2 Providing Multicast in the Protocol Y Cloud
11.3.2.1 Bridging
11.3.2.2 Multicast in IPX
11.3.2.3 Multicast in ATM
11.3.2.4 Multicast in SMDS
11.3.3 LAN Emulation
11.3.3.1 Some LANE Jargon
11.3.3.2 A Client (LEC) Boots Up
11.3.3.3 Joining an ELAN
11.3.3.4 Transmitting to Another LEC
11.3.3.5 Sending a Multicast Packet
11.3.4 Classical IP and ARP over ATM
11.3.5 Cutting Out Extra Hops
11.4 Finding Things
11.4.1 Finding Services, Generically
11.4.2 AppleTalk's Scheme
11.4.3 Service Advertising Protocol for NetWare
Homework
Chapter 12. Routing Algorithm Concepts
12.1 Distance Vector Routing
12.1.1 Why Not Distance Vector?
12.1.1.1 Hold-down
12.1.1.2 Reporting the Entire Path
12.1.1.3 Split Horizon
12.1.1.4 Two Metrics
12.1.1.5 Triggered Updates
12.1.1.6 Poison Reverse
12.1.1.7 DUAL
12.2 Link State Routing
12.2.1 Meeting Neighbors
12.2.2 Constructing an LSP
12.2.3 Disseminating the LSP to All Routers
12.2.3.1 Timestamps
12.2.3.2 Sequence Number/Age Schemes
12.2.3.3 The ARPANET LSP Distribution Scheme
12.2.3.4 New, Improved LSP Distribution
12.2.4 Computing Routes
12.3 Comparison of Link State and Distance Vector Routing
12.3.1 Memory
12.3.2 Bandwidth Consumed
12.3.3 Computation
12.3.4 A Note about Computation Cost
12.3.5 Robustness
12.3.6 Functionality
12.3.7 Speed of Convergence
12.4 Load Splitting
12.5 Link Costs
12.6 Migrating Routing Algorithms
12.6.1 Running Both Algorithms
12.6.2 Manual Node-by-Node Switch
12.6.3 Translation
12.7 LANs
12.7.1 Making the LAN a Node
12.7.2 Disseminating Routing Information
12.8 Types of Service
12.8.1 Handling Directives
12.8.2 Multiple Metrics
12.8.3 Policy-based Routing and Policy-based Constraints
12.8.4 Static Routes
12.8.5 Filters
12.8.6 Source Routing
12.8.7 Routing-domain-specific Policy
12.8.8 Service-class-specific Policy
12.9 Partition Repair: Level 1 Subnetwork Partition
Homework
Chapter 13. Fast Packet Forwarding
13.1 Using an Additional Header
13.2 Address Prefix Matching
13.3 Longest Prefix Match with Trie
13.3.1 Collapsing a Long Nonbranching Path
13.3.2 Trading Memory for Search Time
13.3.3 Binary Search on Prefix Lengths
13.3.4 Exploiting Parallelism with Special Hardware
13.3.4.1 Preparing the Data Structure for the Lookup Engine
13.3.4.2 Doing a Lookup
13.3.4.3 Optimizations
13.4 Binary Search
13.4.1 Sort the Prefixes
13.4.2 Add Prefix Length to 1-padded Prefixes
13.4.3 Get Rid of Duplicate Padded Prefixes
13.4.4 K-ary Search
13.4.5 Doing a Lookup
Homework
Chapter 14. Specific Routing Protocols
14.1 A Brief History of Intradomain Routing Protocols
14.2 RIP
14.2.1 RIP Version 2
14.3 RTMP, IPX-RIP, and DECnet
14.4 IS-IS, OSPF, NLSP, and PNNI
14.4.1 Hierarchy
14.4.1.1 IS-IS Hierarchy
14.4.1.2 NLSP Hierarchy
14.4.1.3 OSPF Hierarchy
14.4.1.4 PNNI Hierarchy
14.4.2 Area Addresses
14.4.2.1 IS-IS Area Addresses
14.4.2.2 OSPF Area Addresses
14.4.2.3 NLSP Area Addresses
14.4.2.4 PNNI Peer Group Names
14.4.3 LANs and Designated Routers
14.4.3.1 IS-IS Designated Router Election
14.4.3.2 OSPF Designated Router Election
14.4.3.3 NLSP Designated Router Election
14.4.3.4 PNNI Peer Group Leader Election
14.4.4 Reliable Propagation of LSPs on LANs
14.4.4.1 IS-IS and NLSP Link State Information Propagation
14.4.4.2 OSPF Link State Information Propagation
14.4.4.3 Comparison
14.4.5 Parameter Synchronization
14.4.5.1 IS-IS Parameter Synchronization
14.4.5.2 OSPF Parameter Synchronization
14.4.5.3 PNNI Parameter Synchronization
14.4.6 Destinations per Packet
14.4.7 LSP Database Overload
14.4.7.1 IS-IS Database Overload
14.4.7.2 OSPF Database Overload
14.4.7.3 PNNI Database Overload
14.4.8 Authentication
14.4.9 IS-IS Details
14.4.9.1 IS-IS for IP
14.4.9.2 LAN Designated Router
14.4.9.3 Big Packets
14.4.9.4 Partitioned Areas
14.4.9.5 Partitioned Level 2 Network
14.4.9.6 Multiarea Bridged LANs
14.4.9.7 Packets Used by IS-IS
14.4.10 OSPF
14.4.10.1 General Packet-encoding Issues
14.4.10.2 Terminology
14.4.10.3 Area Partitions
14.4.10.4 Level 2 Partitions
14.4.10.5 Finding the Right Level 2 Router
14.4.10.6 Neighbor Initialization
14.4.10.7 Types of LSAs
14.4.10.8 Packet Encoding
14.4.11 PNNI Details
14.4.11.1 Path Setup
14.4.11.2 Area Partitions
14.5 Interdomain Routing Protocols
14.5.1 Static Routing
14.5.2 EGP
14.5.2.1 Neighbor Acquisition
14.5.2.2 Neighbor Reachability
14.5.2.3 Routing Information
14.5.3 BGP
14.5.3.1 BGP Neighbors
14.5.3.2 BGP Attributes
14.5.3.3 BGP Policies
14.5.3.4 Confederations
14.5.3.5 Message Types
14.5.3.6 Message Formats
Homework
Chapter 15. WAN Multicast
15.1 Introduction
15.1.1 Layer 2 Multicast
15.1.2 Reasons for Layer 3 Multicast
15.1.3 Dimensions to Consider
15.1.4 Multihop Multicast (other than in IP)
15.2 Multicast in IP
15.2.1 Centralized versus Decentralized Multicast
15.2.2 Could We Do Without Layer 3 Multicast?
15.2.3 Mapping NL Multicast to DL Multicast
15.2.4 IGMP Protocol
15.2.5 IGMP Snooping
15.2.6 Reverse Path Forwarding
15.2.7 Distance Vector Multicast Routing Protocol
15.2.8 Multicast OSPF
15.2.9 Core-based Trees
15.2.10 PIM-DM
15.2.11 PIM-SM
15.2.12 BGMP/MASC
15.2.13 Multicast Source Distribution Protocol
15.2.14 Simplifying Multicast
15.2.14.1 Creating a Group in Simple Multicast: Choosing C
15.2.14.2 How Do Endnodes Discover C?
15.2.14.3 Isn't a Shared Tree Suboptimal?
15.2.14.4 Single Point of Failure?
15.2.14.5 Controlling Who Can Send
15.2.14.6 Policy
15.2.14.7 Specifying C in Join Messages
15.2.14.8 Specify Both C and G in Data Messages
15.2.14.9 Dense-mode Groups
15.2.14.10 Express
15.2.14.11 What Is Simpler About Simple Multicast?
Homework
Chapter 16. Sabotage-proof Routing
16.1 The Problem
16.2 All You Need to Know about Cryptography
16.3 Overview of the Approach
16.3.1 Robust Flooding
16.3.1.1 Summary of Robust Flooding
16.3.2 Robust Routing
16.4 Detailed Description of the Approach
16.4.1 Robust Flooding Revisited
16.4.1.1 A Priori Information
16.4.1.2 Dynamic Database
16.4.1.3 Dealing with Multiple Public Key Distributors
16.4.1.4 Packets
16.4.1.5 Distribution of Public Key List Packets
16.4.1.6 Distribution of LSPs
16.4.1.7 Receipt of Acks
16.4.1.8 Running Out of Sequence Number
16.4.2 Robust Data Routing
16.4.3 Additional Dynamic Database
16.4.3.1 Additional Packets
16.4.3.2 Receipt of Route-setup Packets
16.4.3.3 Receipt of Data Packets
16.4.3.4 Nonfunctioning Routes
16.5 Summary
16.6 For Further Reading
Homework
Chapter 17. To Route, Bridge, or Switch: Is That the Question?
17.1 Switches
17.2 Bridges versus Routers
17.3 Extensions to Bridges
17.3.1 Using More Than the Spanning Tree
17.3.2 Fragmenting Bridges
17.3.3 IGMP Snooping
17.4 Extensions to Routers
17.4.1 Faster Routers
17.4.2 Multiprotocol Routers
17.4.3 Single-protocol Backbone
17.4.4 Brouters
Chapter 18. Protocol Design Folklore
18.1 Simplicity versus Flexibility versus Optimality
18.2 Knowing the Problem You're Trying to Solve
18.3 Overhead and Scaling
18.4 Operation Above Capacity
18.5 Compact IDs versus Object Identifiers
18.6 Optimizing for the Most Common or Important Case
18.7 Forward Compatibility
18.7.1 Large Enough Fields
18.7.2 Independence of Layers
18.7.3 Reserved Fields
18.7.4 Single Version-number Field
18.7.5 Split Version-number Field
18.7.6 Options
18.8 Migration: Routing Algorithms and Addressing
18.9 Parameters
18.9.1 Avoiding Parameters
18.9.2 Legal Parameter Setting
18.9.2.1 "Report My Values" Method
18.9.2.2 "Detect Misconfiguration" Method
18.9.2.3 "Use My Parameters" Method
18.10 Making Multiprotocol Operation Possible
18.11 Running over Layer 3 versus Layer 2
18.12 Robustness
18.13 Determinism versus Stability
18.14 Performance for Correctness
18.15 In Closing
Appendix Glossary
Glossary
About the Author
Interconnections:Bridges, Routers, Switches and Internetworking Protocols I Content 1 15 Chapter 1. Essential Networking Concepts 1 1.1 Layers 1.2 Service Models 5 1.3 Important Properties of a Network 7 1.4 Reliable Data Transfer Protocols 11 Homework Chapter 2. Data Link Layer Issues 17 2.1 Generic LANs 17 2.1.1 What Is a LAN? 17 2.1.2 Taking Turns 18 2.2 IEEE 802 LANs 19 2.3 Names, Addresses, Routes 2.4 LAN Addresses 22 2.5 Multicast versus Unicast Addresses 24 2.6 The Broadcast Address 26 2.7 Multiplexing Field 26 2.8 Bit Order 29 2.9 Logical Link Control30 2.10 Issues in 802.3 32 2.11 Issues in 802.5 34 2.12 Packet Bursts 36 2.13 Reasons for Bridges 2.14 Point-to-Point Links Homework Chapter 3. Transparent Bridges 3.1 The No-Frills Bridge 41 3.2 The Learning Bridge 43 3.3 Spanning Tree Algorithm 53 3.3.1 Configuration Messages54 3.3.2 Calculation of Root ID and Cost to Root 3.3.3 Selecting Spanning Tree Ports 3.3.4 An Example 57 3.4 Spanning Tree Algorithm Refinements 59 3.4.1 Failures 59 3.4.2 Avoiding Temporary Loops 61 3.4.3 Station Cache Timeout Values 3.4.4 Networkwide Parameters 3.4.5 Port ID 66 3.4.6 Assigning Port Numbers 3.4.7 Performance Issues 36 37 39 65 67 41 56 57 63 21 68
Interconnections:Bridges, Routers, Switches and Internetworking Protocols II 72 93 95 99 85 89 89 3.4.8 One-way Connectivity 69 3.4.9 Settable Parameters 70 3.5 Bridge Message Formats 72 3.5.1 Configuration Message Format 3.5.2 Topology change notification format 73 3.6 Other Bridge Issues 74 3.6.1 Multiply Connected Stations 74 3.6.2 Configuration of Filtering 76 3.6.3 Not Quite Transparent 78 3.7 Remote Bridges 82 Homework Chapter 4. Source Routing Bridges 4.1 Pure Source Routing 89 4.1.1 The Routing Header 4.1.2 Bridge Numbers 91 4.1.2.1 Internal LAN Number 92 4.1.2.2 The Route 93 4.1.2.3 Reasons for Parallel Bridges 4.1.3 Bridge Algorithms 95 4.1.3.1 Transparent Packets 95 4.1.3.2 Specifically Routed Packets 4.1.3.3 All Paths Explorer Packets 95 4.1.3.4 Spanning Tree Explorer Packets 96 4.2 SR-TB Bridges 97 4.2.1 Packets from a TB Port 97 4.2.2 Packets from an SR Port 4.2.3 Loops 100 4.3 SRT Bridges 101 4.4 End-system Algorithms 101 4.4.1 When to Find a Route 102 4.4.2 How to Find a Route 104 4.4.2.1 Route Finding Strategy 1 104 4.4.2.2 Route Finding Strategy 2 105 4.4.2.3 Route Find Strategy 3 106 4.4.2.4 Route Finding Strategy 4 106 4.4.2.5 Route Finding Strategy 5 107 4.4.2.6 Route Finding Strategy 6 107 4.4.3 Route Discovery by the Destination 4.4.4 Route Selection 4.5 Source Routing versus Transparent Bridging 109 4.5.1 Bandwidth Overhead 109 4.5.2 Ease of Configuration 109 4.5.3 Universality 110 4.5.4 Cost and Performance of Bridges 110 108 108
Interconnections:Bridges, Routers, Switches and Internetworking Protocols III 113 133 126 117 121 121 4.6 Ideas for Improving Source Route Bridging 111 4.6.1 Autoconfiguration with Source Route Bridging 111 4.6.2 Fixing the Exponential Overhead 112 Homework Chapter 5. Hubs, Switches, Virtual LANs, and Fast Ethernet 5.1 Hubs 117 5.1.1 The Learning Hub and Security 118 5.1.2 Store-and-Forward and Spanning Tree 119 5.1.3 Mixing Layer 1 and 2 Switches 120 5.1.4 Products versus Standards, Layer 1 versus Layer 2 5.2 Faster LANs 5.3 Virtual LANs (VLANs) 123 5.3.1 Why VLANs? 125 5.3.2 Mapping Ports to VLANs 5.3.3 Example: VLAN Forwarding with Separate Router 126 5.3.4 Example: VLAN Forwarding with Switch as Router 128 5.3.5 Dynamic Binding of Links to VLANs 129 5.3.6 Dynamic VLAN Binding, Switch-Switch 131 Homework Chapter 6. Network Interface: Service Models 6.1 What Is the Network Layer? 135 6.2 Network Service Types 135 6.2.1 Performance Guarantees 6.2.2 Sample Service Model Choices 137 6.2.3 Hybrid Schemes 137 6.2.4 Connectionless versus Connection-oriented 138 Homework Chapter 7. Connection-oriented Nets: X.25 and ATM 141 7.1 Generic Connection-oriented Network 141 7.2 X.25: Reliable Connection-oriented Service 143 7.2.1 The Basic Idea 7.2.2 Virtual Circuit Numbers 145 145 7.2.3 Call Setup 7.2.4 Data Transfer 147 7.2.5 Flow Control 152 7.2.6 Facilities 153 7.2.7 Call Release 154 7.2.8 Interrupts 154 7.3 Implementing X.25 Inside the Net 154 7.3.1 Circuit Method 7.3.2 Reliable Connections over Datagrams Method 155 7.3.3 Comparison 155 7.4 Asynchronous Transfer Mode 156 7.4.1 Cell Size 156 140 135 136 144 155
Interconnections:Bridges, Routers, Switches and Internetworking Protocols IV 161 162 163 159 160 7.4.2 Virtual Circuits and Virtual Paths 157 7.4.3 ATM Service Categories 7.4.4 ATM Cell Header Format 7.4.5 Setting Up and Releasing Calls 7.4.6 ATM Adaptation Layers 161 7.4.6.1 AAL1 162 7.4.6.2 AAL3/4 7.4.6.3 AAL5 163 Homework Chapter 8. Generic Connectionless Service 165 8.1 Data Transfer 165 8.2 Addresses 165 8.3 Hop Count 166 8.4 Service Class Information 166 8.4.1 Priority 167 8.4.2 Bandwidth Reservation and Service Guarantees 167 8.4.3 Special Route Computation 167 8.5 Network Feedback 168 8.6 Fragmentation and Reassembly 168 8.7 Maximum Packet Size Discovery 170 Homework Chapter 9. Network Layer Addresses 173 174 9.1 Hierarchical Addresses with Fixed Boundaries 9.2 Hierarchical Addresses with Flexible Boundaries 176 9.3 Owning versus Renting Addresses 177 9.4 Types of Addresses 177 9.5 IP 9.5.1 IP Address Conventions 181 9.5.2 Text Representation of IP Addresses 9.6 IPX 183 9.6.1 Privacy Issue with Unique IDs 9.6.2 Ugly Rumors about IPX 184 9.6.3 Administering IPX Addresses 9.6.4 Internal IPX Network Numbers 185 9.7 IPX+ 187 9.8 IPv6 188 9.8.1 The IPv6 Version Number Story 188 9.8.2 Written Representation of IPv6 Addresses 189 9.8.3 Written Representation of IPv6 Prefixes 189 9.8.4 EUI-64 189 9.8.5 EUI-64 As Used by IPv6 191 9.8.6 IPv6 Address Conventions 191 9.8.7 Transition from IPv4 to IPv6 192 193 9.9 CLNP Network Layer Addresses 182 183 184 171 178
Interconnections:Bridges, Routers, Switches and Internetworking Protocols V 198 201 9.9.1 Autoconfiguration 196 9.9.2 Embedded DTE Addresses 196 9.10 AppleTalk Network Layer Addresses 197 9.11 DECnet Phases III and IV 9.11.1 A Bit of History 198 9.11.2 DECnet Phase IV Address 198 9.11.3 Mapping DECnet Address to Ethernet Address 199 9.12 NAT/NAPT 199 Homework Chapter 10. Connectionless Data Packet Formats 203 10.1 Pieces of a Connectionless Network Layer 203 10.2 Data Packets 204 10.3 Summary of Packet Formats for Easy Reference 204 10.3.1 IP 204 10.3.2 IPX 205 10.3.3 IPX+ 206 10.3.4 AppleTalk 207 10.3.5 IPv6 208 10.3.6 DECnet 209 10.3.7 CLNP 210 10.4 Technical Issues and Comparisons in Data Packet Formats 212 10.4.1 Destination Address 212 10.4.2 Source Address 212 10.4.3 Destination and Source Sockets 213 10.4.4 Header Length 10.4.5 Packet Length 10.4.6 Header Checksum 10.4.7 Fragmentation Allowed 10.4.8 Packet Identifier 215 10.4.9 Fragment Offset 216 10.4.10 Prefragmentation Length 216 10.4.11 More Fragments Follow 216 10.4.12 Lifetime 10.4.13 Version 10.4.14 Padding 10.4.15 Protocol 10.4.16 Type 220 10.4.17 Error Report Requested 221 10.4.18 Congestion Feedback: Source Quench versus DEC Bit 221 10.4.19 Type of Service 222 10.4.19.1 TOS Field in IPv4 222 10.4.19.2 TOS in CLNP 223 10.4.19.3 TOS in IPX, AppleTalk, and DECnet 225 10.4.19.4 New Ideas for TOS 225 217 218 219 219 213 213 214 215
Interconnections:Bridges, Routers, Switches and Internetworking Protocols VI 245 231 226 10.4.20 Options 10.4.20.1 Options in CLNP 226 10.4.20.2 Options in IP 227 10.5 Source Routing 10.5.1 Loose versus Strict Source Routing 232 10.5.2 Overwriting a Source Route with an Outgoing Link Address 232 10.5.3 Overwriting a Destination Address with a Next Source Route 233 10.5.4 A Security Flaw with the Source Route Option 233 10.6 The Great IPX Frame Format Mystery 234 10.6.1 IPX's Four Frame Formats 235 10.6.2 Dealing with Multiple IPX Frame Formats 236 10.7 Error Reports and Other Network Feedback to the Endnode 237 10.7.1 CLNP Error Messages 237 10.7.2 ICMP: IP Error Messages 239 10.7.3 IPv6 Error Messages 244 Homework Chapter 11. Neighbor Greeting and Autoconfiguration 247 11.1 Endnodes Attached via Point-to-Point Links 247 11.2 Endnodes Attached via LANs 248 11.2.1 ES-IS: The CLNP Solution 250 11.2.2 The IP Solution 253 11.2.2.1 IP: Finding Neighbors' Layer 2 Addresses 11.2.2.2 ARP/RARP Message Format 254 11.2.2.3 Redirect Messages 255 11.2.2.4 IP: Endnode Autoconfiguration 11.2.3 The IPX Solution 259 11.2.4 The DECnet Solution 260 11.2.5 The AppleTalk Solution 11.2.5.1 Knowing Who Is on Your LAN 11.2.5.2 Finding a Router 11.2.5.3 Acquiring an AppleTalk Address 11.2.5.4 Seed Routers 262 11.2.5.5 Some Wrinkles 262 11.2.5.6 Finding the Best Router for a Given Destination 11.2.6 The IPv6 Solution 11.2.7 Review and Comparisons 263 11.2.7.1 Endnodes Acquire a Layer 3 Address 11.2.7.2 Router Finds Out Layer 3 Addresses of Endnode Neighbors 263 11.2.7.3 Router Finds Out Layer 2 Addresses of Endnode Neighbors 263 11.2.7.4 Endnodes Find a Router 263 11.2.7.5 Endnode Neighbors Send Directly to Each Other 264 11.2.7.6 Finding the Best Router 264 11.2.7.7 Routerless LAN 264 11.2.8 Comparisons 264 261 261 261 261 262 263 254 256 262
Interconnections:Bridges, Routers, Switches and Internetworking Protocols VII 270 271 279 273 284 267 273 276 11.2.8.1 ES-IS versus ARP 264 11.3 Endnodes Attached via Nonbroadcast Multiaccess Media 265 11.3.1 Various Solutions 266 11.3.2 Providing Multicast in the Protocol Y Cloud 11.3.2.1 Bridging 267 267 11.3.2.2 Multicast in IPX 267 11.3.2.3 Multicast in ATM 11.3.2.4 Multicast in SMDS 269 11.3.3 LAN Emulation 269 11.3.3.1 Some LANE Jargon 269 11.3.3.2 A Client (LEC) Boots Up 270 11.3.3.3 Joining an ELAN 11.3.3.4 Transmitting to Another LEC 271 11.3.3.5 Sending a Multicast Packet 271 11.3.4 Classical IP and ARP over ATM 271 11.3.5 Cutting Out Extra Hops 11.4 Finding Things 11.4.1 Finding Services, Generically 11.4.2 AppleTalk's Scheme 274 11.4.3 Service Advertising Protocol for NetWare 275 Homework Chapter 12. Routing Algorithm Concepts 12.1 Distance Vector Routing 279 12.1.1 Why Not Distance Vector? 283 12.1.1.1 Hold-down 12.1.1.2 Reporting the Entire Path 284 12.1.1.3 Split Horizon 284 12.1.1.4 Two Metrics 285 12.1.1.5 Triggered Updates 286 12.1.1.6 Poison Reverse 286 12.1.1.7 DUAL 12.2 Link State Routing 287 288 12.2.1 Meeting Neighbors 12.2.2 Constructing an LSP 288 12.2.3 Disseminating the LSP to All Routers 288 12.2.3.1 Timestamps 12.2.3.2 Sequence Number/Age Schemes 12.2.3.3 The ARPANET LSP Distribution Scheme 12.2.3.4 New, Improved LSP Distribution 12.2.4 Computing Routes 12.3 Comparison of Link State and Distance Vector Routing 12.3.1 Memory 12.3.2 Bandwidth Consumed 300 12.3.3 Computation 301 300 290 294 291 299 289 297 287
分享到:
收藏