logo资料库

signals and systems using matlab.pdf

第1页 / 共769页
第2页 / 共769页
第3页 / 共769页
第4页 / 共769页
第5页 / 共769页
第6页 / 共769页
第7页 / 共769页
第8页 / 共769页
资料共769页,剩余部分请下载后查看
Front cover
Signals and Systems Using MATLAB®
Copyright page
Dedication
Table of contents
Preface
Acknowledgments
Part 1: Introduction
Chapter 0. From the Ground Up!
0.1 Signals and Systems and Digital Technologies
0.2 Examples of Signal Processing Applications
0.3 Analog or Discrete?
0.4 Complex or Real?
0.5 Soft Introduction to MATLAB
Problems
Part 2: Theory and Application of Continuous-Time Signals and Systems
Chapter 1. Continuous-Time Signals
1.1 Introduction
1.2 Classification of Time-Dependent Signals
1.3 Continuous-Time Signals
1.4 Representation Using Basic Signals
1.5 What Have We Accomplished? Where Do We Go from Here?
Problems
Chapter 2. Continuous-Time Systems
2.1 Introduction
2.2 System Concept
2.3 LTI Continuous-Time Systems
2.4 What Have We Accomplished? Where Do We Go from Here?
Problems
Chapter 3. The Laplace Transform
3.1 Introduction
3.2 The Two-Sided Laplace Transform
3.3 The One-Sided Laplace Transform
3.4 Inverse Laplace Transform
3.5 Analysis of LTI Systems
3.6 What Have We Accomplished? Where Do We Go from Here?
Problems
Chapter 4. Frequency Analysis: The Fourier Series
4.1 Introduction
4.2 Eigenfunctions Revisited
4.3 Complex Exponential Fourier Series
4.4 Line Spectra
4.5 Trigonometric Fourier Series
4.6 Fourier Coefficients from Laplace
4.7 Convergence of the Fourier Series
4.8 Time and Frequency Shifting
4.9 Response of LTI Systems to Periodic Signals
4.10 Other Properties of the Fourier Series
4.11 What Have We Accomplished? Where Do We Go from Here?
Problems
Chapter 5. Frequency Analysis: The Fourier Transform
5.1 Introduction
5.2 From the Fourier Series to the Fourier Transform
5.3 Existence of the Fourier Transform
5.4 Fourier Transforms from the Laplace Transform
5.5 Linearity, Inverse Proportionality, and Duality
5.6 Spectral Representation
5.7 Convolution and Filtering
5.8 Additional Properties
5.9 What have We Accomplished? What is next?
Problems
Chapter 6. Application to Control and Communications
6.1 Introduction
6.2 System Connections and Block Diagrams
6.3 Application to Classic Control
6.4 Application to Communications
6.5 Analog Filtering
6.6 What Have We Accomplished? What is next?
Problems
Part 3: Theory and Application of Discrete-Time Signals and Systems
Chapter 7. Sampling Theory
7.1 Introduction
7.2 Uniform Sampling
7.3 The Nyquist-Shannon Sampling Theorem
7.4 Practical Aspects of Sampling
7.5 What Have We Accomplished? Where Do We Go from Here?
Problems
Chapter 8. Discrete-Time Signals and Systems
8.1 Introduction
8.2 Discrete-Time Signals
8.3 Discrete-Time Systems
8.4 What Have We Accomplished? Where Do We Go from Here?
Problems
Chapter 9. The Z-Transform
9.1 Introduction
9.2 Laplace Transform of Sampled Signals
9.3 Two-Sided Z-Transform
9.4 One-Sided Z-Transform
9.5 One-Sided Z-Transform Inverse
9.6 What Have We Accomplished? Where Do We Go from Here?
Problems
Chapter 10. Fourier Analysis of Discrete-Time Signals and Systems
10.1 Introduction
10.2 Discrete-Time Fourier Transform
10.3 Fourier Series of Discrete-Time Periodic Signals
10.4 Discrete Fourier Transform
10.5 What Have We Accomplished? Where Do We Go from Here?
Problems
Chapter 11. Introduction to the Design of Discrete Filters
11.1 Introduction
11.2 Frequency-Selective Discrete Filters
11.3 Filter Specifications
11.4 IIR Filter Design
11.5 FIR Filter Design
11.6 Realization of Discrete Filters
11.7 What Have We Accomplished? Where Do We Go from Here?
Problems
Chapter 12. Applications of Discrete-Time Signals and Systems
12.1 Introduction
12.2 Application to Digital Signal Processing
12.3 Application to Sampled-Data and Digital Control Systems
12.4 Application to Digital Communications
12.5 What Have We Accomplished? Where Do We Go from Here?
Appendix. Useful Formulas
Bibliography
Index
Signals and Systems Using MATLAB Luis F. Chaparro Department of Electrical and Computer Engineering University of Pittsburgh AMSTERDAM • BOSTON • HEIDELBERG • LONDON SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO NEW YORK • OXFORD • PARIS • SAN DIEGO Academic Press is an imprint of Elsevier
Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Elsevier, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK Copyright c 2011 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). MATLAB R does not warrant the accuracy of the text or exercises in this book. This books use or discussion of MATLAB R approach or particular use of the MATLAB R or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks software. software Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. Library of Congress Cataloging-in-Publication Data Chaparro, Luis F. R Signals and systems using MATLAB / Luis F. Chaparro. p. cm. ISBN 978-0-12-374716-7 1. Signal processing–Digital techniques. 2. System analysis. 3. MATLAB. I. Title. TK5102.9.C472 2010 621.382’2–dc22 2010023436 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. For information on all Academic Press publications visit our Web site at www.elsevierdirect.com Printed in the United States of America 10 11 12 13 9 8 7 6 5 4 3 2 1
To my family, with much love.
Contents PREFACE ..................................................................................................................... xi ACKNOWLEDGMENTS ................................................................................................ xvi 1 Introduction From the Ground Up! ............................................................................. Signals and Systems and Digital Technologies........................................ 0.1 Examples of Signal Processing Applications ........................................... 0.2 0.2.1 Compact-Disc Player ................................................................ Software-Defined Radio and Cognitive Radio............................... 0.2.2 0.2.3 Computer-Controlled Systems ................................................... 0.3 Analog or Discrete? ............................................................................. 3 3 5 5 6 8 9 Continuous-Time and Discrete-Time Representations .................. 10 Derivatives and Finite Differences ............................................. 12 Integrals and Summations......................................................... 13 Differential and Difference Equations ......................................... 16 0.4 Complex or Real? ................................................................................ 20 Complex Numbers and Vectors.................................................. 20 0.4.1 Functions of a Complex Variable................................................ 23 0.4.2 Phasors and Sinusoidal Steady State .......................................... 24 0.4.3 0.4.4 Phasor Connection ................................................................... 26 Soft Introduction to MATLAB ............................................................... 29 0.5.1 Numerical Computations .......................................................... 30 0.5.2 Symbolic Computations ............................................................ 43 Problems............................................................................................ 53 0.3.1 0.3.2 0.3.3 0.3.4 0.5 Part 1 CHAPTER 0 Part 2 CHAPTER 1 Continuous-Time Signals ......................................................................... Theory and Application of Continuous-Time Signals and Systems 63 65 1.1 Introduction ....................................................................................... 65 1.2 Classification of Time-Dependent Signals............................................... 66 iv
Contents v 1.4 1.3 Continuous-Time Signals ..................................................................... 67 Basic Signal Operations—Time Shifting and Reversal ................... 71 1.3.1 Even and Odd Signals .............................................................. 75 1.3.2 Periodic and Aperiodic Signals .................................................. 77 1.3.3 1.3.4 Finite-Energy and Finite Power Signals ...................................... 79 Representation Using Basic Signals....................................................... 85 Complex Exponentials .............................................................. 85 1.4.1 Unit-Step, Unit-Impulse, and Ramp Signals ................................. 88 1.4.2 Special Signals—the Sampling Signal and the Sinc ....................... 100 1.4.3 1.4.4 Basic Signal Operations—Time Scaling, Frequency Shifting, and Windowing ....................................................................... 102 1.4.5 Generic Representation of Signals.............................................. 105 1.5 What Have We Accomplished? Where Do We Go from Here?.................... 106 Problems............................................................................................ 108 2.3 2.1 2.2 CHAPTER 2 Continuous-Time Systems ....................................................................... 117 Introduction ....................................................................................... 117 System Concept .................................................................................. 118 2.2.1 System Classification................................................................ 118 LTI Continuous-Time Systems .............................................................. 119 Linearity ................................................................................. 120 2.3.1 2.3.2 Time Invariance....................................................................... 125 2.3.3 Representation of Systems by Differential Equations.................... 130 2.3.4 Application of Superposition and Time Invariance ....................... 135 Convolution Integral................................................................. 136 2.3.5 2.3.6 Causality ................................................................................ 143 2.3.7 Graphical Computation of Convolution Integral ........................... 145 Interconnection of Systems—Block Diagrams .............................. 147 2.3.8 2.3.9 Bounded-Input Bounded-Output Stability ................................... 153 2.4 What Have We Accomplished? Where Do We Go from Here?.................... 156 Problems............................................................................................ 157 3.1 3.2 CHAPTER 3 The Laplace Transform ............................................................................ 165 Introduction ....................................................................................... 165 The Two-Sided Laplace Transform ........................................................ 166 Eigenfunctions of LTI Systems................................................... 167 3.2.1 3.2.2 Poles and Zeros and Region of Convergence ............................... 172 The One-Sided Laplace Transform ........................................................ 176 Linearity ................................................................................. 185 3.3.1 Differentiation ......................................................................... 188 3.3.2 Integration .............................................................................. 193 3.3.3 3.3.4 Time Shifting........................................................................... 194 Convolution Integral................................................................. 196 3.3.5 3.3
vi Contents CHAPTER 4 CHAPTER 5 3.4 Inverse Laplace Transform ................................................................... 197 3.4.1 Inverse of One-Sided Laplace Transforms ................................... 197 −ρs Terms ................................ 209 Inverse of Functions Containing e 3.4.2 3.4.3 Inverse of Two-Sided Laplace Transforms ................................... 212 3.5 Analysis of LTI Systems ....................................................................... 214 LTI Systems Represented by Ordinary Differential Equations ........ 214 Computation of the Convolution Integral .................................... 221 3.6 What Have We Accomplished? Where Do We Go from Here?.................... 226 Problems............................................................................................ 226 3.5.1 3.5.2 Frequency Analysis: The Fourier Series .................................................. 237 Introduction ....................................................................................... 237 4.1 4.2 Eigenfunctions Revisited ..................................................................... 238 4.3 Complex Exponential Fourier Series ...................................................... 245 Line Spectra ....................................................................................... 248 4.4 Parseval’s Theorem—Power Distribution over Frequency ............. 248 4.4.1 4.4.2 Symmetry of Line Spectra ......................................................... 250 Trigonometric Fourier Series ................................................................ 251 4.5 4.6 Fourier Coefficients from Laplace.......................................................... 255 4.7 Convergence of the Fourier Series......................................................... 265 4.8 Time and Frequency Shifting................................................................ 270 Response of LTI Systems to Periodic Signals........................................... 273 4.9 Sinusoidal Steady State............................................................. 274 4.9.1 4.9.2 Filtering of Periodic Signals....................................................... 276 4.10 Other Properties of the Fourier Series .................................................... 279 4.10.1 Reflection and Even and Odd Periodic Signals ............................. 279 4.10.2 Linearity of Fourier Series—Addition of Periodic Signals ............... 282 4.10.3 Multiplication of Periodic Signals ............................................... 284 4.10.4 Derivatives and Integrals of Periodic Signals ............................... 285 4.11 What Have We Accomplished? Where Do We Go from Here?.................... 289 Problems............................................................................................ 290 Frequency Analysis: The Fourier Transform ........................................... 299 Introduction ....................................................................................... 299 5.1 From the Fourier Series to the Fourier Transform .................................... 300 5.2 5.3 Existence of the Fourier Transform ....................................................... 302 Fourier Transforms from the Laplace Transform ..................................... 302 5.4 Linearity, Inverse Proportionality, and Duality ........................................ 304 5.5 5.5.1 Linearity ................................................................................. 304 Inverse Proportionality of Time and Frequency............................ 305 5.5.2 5.5.3 Duality ................................................................................... 310
Contents vii 5.6 5.8.1 5.8.2 Spectral Representation ....................................................................... 313 Signal Modulation .................................................................... 313 5.6.1 5.6.2 Fourier Transform of Periodic Signals ......................................... 317 Parseval’s Energy Conservation................................................. 320 5.6.3 5.6.4 Symmetry of Spectral Representations........................................ 322 5.7 Convolution and Filtering..................................................................... 327 Basics of Filtering .................................................................... 329 Ideal Filters ............................................................................. 332 Frequency Response from Poles and Zeros.................................. 337 Spectrum Analyzer................................................................... 341 5.8 Additional Properties .......................................................................... 344 Time Shifting .......................................................................... 344 Differentiation and Integration .................................................. 346 5.9 What Have We Accomplished? What Is Next? ....................................... 350 Problems............................................................................................ 350 5.7.1 5.7.2 5.7.3 5.7.4 6.3.1 6.3.2 CHAPTER 6 Application to Control and Communications ........................................... 359 Introduction ....................................................................................... 359 6.1 6.2 System Connections and Block Diagrams ............................................... 360 6.3 Application to Classic Control............................................................... 363 Stability and Stabilization ......................................................... 369 Transient Analysis of First- and Second-Order Control Systems ..... 371 6.4 Application to Communications ............................................................ 377 6.4.1 AM with Suppressed Carrier ..................................................... 379 6.4.2 Commercial AM....................................................................... 380 6.4.3 AM Single Sideband ................................................................. 382 6.4.4 Quadrature AM and Frequency-Division Multiplexing .................. 383 6.4.5 Angle Modulation .................................................................... 385 6.5 Analog Filtering.................................................................................. 390 Filtering Basics........................................................................ 390 Butterworth Low-Pass Filter Design........................................... 393 Chebyshev Low-Pass Filter Design ............................................ 396 Frequency Transformations ...................................................... 402 Filter Design with MATLAB ...................................................... 405 6.6 What Have We Accomplished? What Is Next? ........................................ 409 Problems............................................................................................ 409 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 Part 3 CHAPTER 7 Theory and Application of Discrete-Time Signals and Systems 417 Sampling Theory...................................................................................... 419 Introduction ....................................................................................... 419 7.1
分享到:
收藏