logo资料库

Python SQLAlchemy基本操作和常用技巧(包含大量实例,非常好).pdf

第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
资料共11页,剩余部分请下载后查看
Python SQLAlchemy基本操作和常用技巧(包含大量实例 常好)常好) 首先说下,由于最新的 0.8 版还是开发版本,因此我使用的是 0.79 版,API 也许会有些不同。 因为我是搭配 MySQL InnoDB 使用,所以使用其他数据库的也不能完全照搬本文。 基本操作和常用技巧(包含大量实例,非非 接着就从安装开始介绍吧,以 Debian/Ubuntu 为例(请确保有管理员权限): 1.MySQL 复制代码 代码如下:apt-get install mysql-server apt-get install mysql-client apt-get install libmysqlclient15-dev 2.python-mysqldb 复制代码 代码如下:apt-get install python-mysqldb 3.easy_install 复制代码 代码如下:wget http://peak.telecommunity.com/dist/ez_setup.py python ez_setup.py 4.MySQL-Python 复制代码 代码如下:easy_install MySQL-Python 5.SQLAlchemy 复制代码 代码如下:easy_install SQLAlchemy 如果是用其他操作系统,遇到问题就 Google 一下吧。我是在 Mac OS X 上开发的,途中也遇到些问题,不过当时没记下 来…… 值得一提的是我用了 MySQL-Python 来连 MySQL,因为不支持异步调用,所以和 Tornado 不是很搭。不过性能其实很好, 因此以后再去研究下其他方案吧…… 装好后就可以开始使用了: 复制代码 代码如下:from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker DB_CONNECT_STRING = ‘mysql+mysqldb://root:123@localhost/ooxx?charset=utf8’ engine = create_engine(DB_CONNECT_STRING, echo=True) DB_Session = sessionmaker(bind=engine) session = DB_Session() 这里的 DB_CONNECT_STRING 就是连接数据库的路径。“mysql+mysqldb”指定了使用 MySQL-Python 来连 接,“root”和“123”分别是用户名和密码,“localhost”是数据库的域名,“ooxx”是使用的数据库名(可省略),“charset”指定了连 接时使用的字符集(可省略)。 create_engine() 会返回一个数据库引擎,echo 参数为 True 时,会显示每条执行的 SQL 语句,生产环境下可关闭。 sessionmaker() 会生成一个数据库会话类。这个类的实例可以当成一个数据库连接,它同时还记录了一些查询的数据,并决 定什么时候执行 SQL 语句。由于 SQLAlchemy 自己维护了一个数据库连接池(默认 5 个连接),因此初始化一个会话的开销 并不大。对 Tornado 而言,可以在 BaseHandler 的 initialize() 里初始化: 复制代码 代码如下: class BaseHandler(tornado.web.RequestHandler): def initialize(self): self.session = models.DB_Session() def on_finish(self): self.session.close() 对其他 Web 服务器来说,可以使用 sqlalchemy.orm.scoped_session,它能保证每个线程获得的 session 对象都是唯一的。 不过 Tornado 本身就是单线程的,如果使用了异步方式,就可能会出现问题,因此我并没使用它。 拿到 session 后,就可以执行 SQL 了: 复制代码 代码如下:session.execute(‘create database abc’) print session.execute(‘show databases’).fetchall() session.execute(‘use abc’)
# 建 user 表的过程略 print session.execute(‘select * from user where id = 1’).first() print session.execute(‘select * from user where id = :id’, {‘id’: 1}).first() 不过这和直接使用 MySQL-Python 没啥区别,所以就不介绍了;我还是喜欢 ORM 的方式,这也是我采用 SQLAlchemy 的唯 一原因。 于是来定义一个表: 复制代码 代码如下:from sqlalchemy import Column from sqlalchemy.types import CHAR, Integer, String from sqlalchemy.ext.declarative import declarative_base BaseModel = declarative_base() def init_db(): BaseModel.metadata.create_all(engine) def drop_db(): BaseModel.metadata.drop_all(engine) class User(BaseModel): __tablename__ = ‘user’ id = Column(Integer, primary_key=True) name = Column(CHAR(30)) # or Column(String(30)) init_db() declarative_base() 创建了一个 BaseModel 类,这个类的子类可以自动与一个表关联。 以 User 类为例,它的 __tablename__ 属性就是数据库中该表的名称,它有 id 和 name 这两个字段,分别为整型和 30 个定长 字符。Column 还有一些其他的参数,我就不解释了。 最后,BaseModel.metadata.create_all(engine) 会找到 BaseModel 的所有子类,并在数据库中建立这些表;drop_all() 则是删 除这些表。 接着就开始使用这个表吧: 复制代码 代码如下:from sqlalchemy import func, or_, not_ user = User(name=’a’) session.add(user) user = User(name=’b’) session.add(user) user = User(name=’a’) session.add(user) user = User() session.add(user) session.commit() query = session.query(User)
print query # 显示SQL 语句 print query.statement # 同上 for user in query: # 遍历时查询 print user.name print query.all() # 返回的是一个类似列表的对象 print query.first().name # 记录不存在时,first() 会返回 None # print query.one().name # 不存在,或有多行记录时会抛出异常 print query.filter(User.id == 2).first().name print query.get(2).name # 以主键获取,等效于上句 print query.filter(‘id = 2’).first().name # 支持字符串 query2 = session.query(User.name) print query2.all() # 每行是个元组 print query2.limit(1).all() # 最多返回 1 条记录 print query2.offset(1).all() # 从第 2 条记录开始返回 print query2.order_by(User.name).all() print query2.order_by(‘name’).all() print query2.order_by(User.name.desc()).all() print query2.order_by(‘name desc’).all() print session.query(User.id).order_by(User.name.desc(), User.id).all() print query2.filter(User.id == 1).scalar() # 如果有记录,返回第一条记录的第一个元素 print session.query(‘id’).select_from(User).filter(‘id = 1’).scalar() print query2.filter(User.id > 1, User.name != ‘a’).scalar() # and query3 = query2.filter(User.id > 1) # 多次拼接的 filter 也是 and query3 = query3.filter(User.name != ‘a’) print query3.scalar() print query2.filter(or_(User.id == 1, User.id == 2)).all() # or print query2.filter(User.id.in_((1, 2))).all() # in query4 = session.query(User.id) print query4.filter(User.name == None).scalar() print query4.filter(‘name is null’).scalar() print query4.filter(not_(User.name == None)).all() # not print query4.filter(User.name != None).all() print query4.count() print session.query(func.count(‘*’)).select_from(User).scalar() print session.query(func.count(‘1’)).select_from(User).scalar() print session.query(func.count(User.id)).scalar() print session.query(func.count(‘*’)).filter(User.id > 0).scalar() # filter() 中包含 User,因此不需要指定表 print session.query(func.count(‘*’)).filter(User.name == ‘a’).limit(1).scalar() == 1 # 可以用 limit() 限制 count() 的返回数 print session.query(func.sum(User.id)).scalar() print session.query(func.now()).scalar() # func 后可以跟任意函数名,只要该数据库支持 print session.query(func.current_timestamp()).scalar() print session.query(func.md5(User.name)).filter(User.id == 1).scalar() query.filter(User.id == 1).update({User.name: ‘c’}) user = query.get(1) print user.name user.name = ‘d’ session.flush() # 写数据库,但并不提交 print query.get(1).name session.delete(user) session.flush()
print query.get(1) session.rollback() print query.get(1).name query.filter(User.id == 1).delete() session.commit() print query.get(1) 增删改查都涉及到了,自己看看输出的 SQL 语句就知道了,于是基础知识就介绍到此了。 下面开始介绍一些进阶的知识。 如何批量插入大批数据? 如何批量插入大批数据? 可以使用非 ORM 的方式: 复制代码 代码如下:session.execute( User.__table__.insert(), [{‘name’: `randint(1, 100)`,’age’: randint(1, 100)} for i in xrange(10000)] ) session.commit() 上面我批量插入了 10000 条记录,半秒内就执行完了;而 ORM 方式会花掉很长时间。 如何让执行的 SQL 语句增加前缀? 如何让执行的 语句增加前缀? 使用 query 对象的 prefix_with() 方法: 复制代码 代码如下:session.query(User.name).prefix_with(‘HIGH_PRIORITY’).all() session.execute(User.__table__.insert().prefix_with(‘IGNORE’), {‘id’: 1, ‘name’: ‘1’}) 如何替换一个已有主键的记录? 如何替换一个已有主键的记录? 使用 session.merge() 方法替代 session.add(),其实就是 SELECT + UPDATE: 复制代码 代码如下:user = User(id=1, name=’ooxx’) session.merge(user) session.commit() 或者使用 MySQL 的 INSERT … ON DUPLICATE KEY UPDATE,需要用到 @compiles 装饰器,有点难懂,自己搜索看吧: 《SQLAlchemy ON DUPLICATE KEY UPDATE》 和 sqlalchemy_mysql_ext。 如何使用无符号整数? 如何使用无符号整数? 可以使用 MySQL 的方言: 复制代码 代码如下:from sqlalchemy.dialects.mysql import INTEGER id = Column(INTEGER(unsigned=True), primary_key=True) 模型的属性名需要和表的字段名不一样怎么办? 模型的属性名需要和表的字段名不一样怎么办? 开发时遇到过一个奇怪的需求,有个其他系统的表里包含了一个“from”字段,这在 Python 里是关键字,于是只能这样处理 了: 复制代码 代码如下:from_ = Column(‘from’, CHAR(10)) 如何获取字段的长度? 如何获取字段的长度? Column 会生成一个很复杂的对象,想获取长度比较麻烦,这里以 User.name 为例: 复制代码 代码如下:User.name.property.columns[0].type.length
,以及使用 UTF-8 编码?编码? 如何指定使用 InnoDB,以及使用 如何指定使用 最简单的方式就是修改数据库的默认配置。如果非要在代码里指定的话,可以这样: 复制代码 代码如下:class User(BaseModel): __table_args__ = { ‘mysql_engine’: ‘InnoDB’, ‘mysql_charset’: ‘utf8’ } MySQL 5.5 开始支持存储 4 字节的 UTF-8 编码的字符了,iOS 里自带的 emoji(如 字符)就属于这种。 如果是对表来设置的话,可以把上面代码中的 utf8 改成 utf8mb4,DB_CONNECT_STRING 里的 charset 也这样更改。 如果对库或字段来设置,则还是自己写 SQL 语句比较方便,具体细节可参考《How to support full Unicode in MySQL databases》。 不建议全用 utf8mb4 代替 utf8,因为前者更慢,索引会占用更多空间。 如何设置外键约束? 如何设置外键约束? 复制代码 代码如下:from random import randint from sqlalchemy import ForeignKey class User(BaseModel): __tablename__ = ‘user’ id = Column(Integer, primary_key=True) age = Column(Integer) class Friendship(BaseModel): __tablename__ = ‘friendship’ id = Column(Integer, primary_key=True) user_id1 = Column(Integer, ForeignKey(‘user.id’)) user_id2 = Column(Integer, ForeignKey(‘user.id’)) for i in xrange(100): session.add(User(age=randint(1, 100))) session.flush() # 或 session.commit(),执行完后,user 对象的 id 属性才可以访问(因为 id 是自增的) for i in xrange(100): session.add(Friendship(user_id1=randint(1, 100), user_id2=randint(1, 100))) session.commit() session.query(User).filter(User.age < 50).delete() 执行这段代码时,你应该会遇到一个错误: 复制代码 代码如下:sqlalchemy.exc.IntegrityError: (IntegrityError) (1451, ‘Cannot delete or update a parent row: a foreign key constraint fails (`ooxx`.`friendship`, CONSTRAINT `friendship_ibfk_1` FOREIGN KEY (`user_id1`) REFERENCES `user` (`id`))’) ‘DELETE FROM user WHERE user.age < %s’ (50,) 原因是删除 user 表的数据,可能会导致 friendship 的外键不指向一个真实存在的记录。在默认情况下,MySQL 会拒绝这种操 作,也就是 RESTRICT。InnoDB 还允许指定 ON DELETE 为 CASCADE 和 SET NULL,前者会删除 friendship 中无效的记 录,后者会将这些记录的外键设为 NULL。 除了删除,还有可能更改主键,这也会导致 friendship 的外键失效。于是相应的就有 ON UPDATE 了。其中 CASCADE 变成 了更新相应的外键,而不是删除。
而在 SQLAlchemy 中是这样处理的: 复制代码 代码如下:class Friendship(BaseModel): __tablename__ = ‘friendship’ id = Column(Integer, primary_key=True) user_id1 = Column(Integer, ForeignKey(‘user.id’, ondelete=’CASCADE’, onupdate=’CASCADE’)) user_id2 = Column(Integer, ForeignKey(‘user.id’, ondelete=’CASCADE’, onupdate=’CASCADE’)) 如何连接表? 如何连接表? 复制代码 代码如下:from sqlalchemy import distinct from sqlalchemy.orm import aliased Friend = aliased(User, name=’Friend’) print session.query(User.id).join(Friendship, User.id == Friendship.user_id1).all() # 所有有朋友的用户 print session.query(distinct(User.id)).join(Friendship, User.id == Friendship.user_id1).all() # 所有有朋友的用户(去掉重复 的) print session.query(User.id).join(Friendship, User.id == Friendship.user_id1).distinct().all() # 同上 print session.query(Friendship.user_id2).join(User, User.id == Friendship.user_id1).order_by(Friendship.user_id2).distinct().all() # 所有被别人当成朋友的用户 print session.query(Friendship.user_id2).select_from(User).join(Friendship, User.id == Friendship.user_id1).order_by(Friendship.user_id2).distinct().all() # 同上,join 的方向相反,但因为不是 STRAIGHT_JOIN, 所以 MySQL 可以自己选择顺序 print session.query(User.id, Friendship.user_id2).join(Friendship, User.id == Friendship.user_id1).all() # 用户及其朋友 print session.query(User.id, Friendship.user_id2).join(Friendship, User.id == Friendship.user_id1).filter(User.id < 10).all() # id 小于 10 的用户及其朋友 print session.query(User.id, Friend.id).join(Friendship, User.id == Friendship.user_id1).join(Friend, Friend.id == Friendship.user_id2).all() # 两次 join,由于使用到相同的表,因此需要别名 print session.query(User.id, Friendship.user_id2).outerjoin(Friendship, User.id == Friendship.user_id1).all() # 用户及其朋友 (无朋友则为 None,使用左连接) 这里我没提到 relationship,虽然它看上去很方便,但需要学习的内容实在太多,还要考虑很多性能上的问题,所以干脆自己 join 吧。 为什么无法删除 in 操作查询出来的记录? 为什么无法删除 操作查询出来的记录? 复制代码 代码如下:session.query(User).filter(User.id.in_((1, 2, 3))).delete() 抛出这样的异常: 复制代码 代码如下:sqlalchemy.exc.InvalidRequestError: Could not evaluate current criteria in Python. Specify ‘fetch’ or False for the synchronize_session parameter. 但这样是没问题的: 复制代码 代码如下:session.query(User).filter(or_(User.id == 1, User.id == 2, User.id == 3)).delete() 搜了下找到《Sqlalchemy delete subquery》这个问题,提到了 delete 的一个注意点:删除记录时,默认会尝试删除 session 中符合条件的对象,而 in 操作估计还不支持,于是就出错了。解决办法就是删除时不进行同步,然后再让 session 里的所有 实体都过期: 复制代码 代码如下:session.query(User).filter(User.id.in_((1, 2, 3))).delete(synchronize_session=False) session.commit() # or session.expire_all() 此外,update 操作也有同样的参数,如果后面立刻提交了,那么加上 synchronize_session=False 参数会更快。 如何扩充模型的基类? 如何扩充模型的基类? declarative_base() 会生成一个 class 对象,这个对象的子类一般都和一张表对应。如果想增加这个基类的方法或属性,让子 类都能使用,可以有三种方法: 1.定义一个新类,将它的方法设置为基类的方法: 复制代码 代码如下: class ModelMixin(object): @classmethod
def get_by_id(cls, session, id, columns=None, lock_mode=None): if hasattr(cls, ‘id’): scalar = False if columns: if isinstance(columns, (tuple, list)): query = session.query(*columns) else: scalar = True query = session.query(columns) else: query = session.query(cls) if lock_mode: query = query.with_lockmode(lock_mode) query = query.filter(cls.id == id) if scalar: return query.scalar() return query.first() return None BaseModel.get_by_id = get_by_id @classmethod def get_all(cls, session, columns=None, offset=None, limit=None, order_by=None, lock_mode=None): if columns: if isinstance(columns, (tuple, list)): query = session.query(*columns) else: query = session.query(columns) if isinstance(columns, str): query = query.select_from(cls) else: query = session.query(cls) if order_by is not None: if isinstance(order_by, (tuple, list)): query = query.order_by(*order_by) else: query = query.order_by(order_by) if offset: query = query.offset(offset) if limit: query = query.limit(limit) if lock_mode: query = query.with_lockmode(lock_mode) return query.all() BaseModel.get_all = get_all @classmethod def count_all(cls, session, lock_mode=None): query = session.query(func.count(‘*’)).select_from(cls) if lock_mode: query = query.with_lockmode(lock_mode) return query.scalar() BaseModel.count_all = count_all @classmethod def exist(cls, session, id, lock_mode=None): if hasattr(cls, ‘id’): query = session.query(func.count(‘*’)).select_from(cls).filter(cls.id == id) if lock_mode: query = query.with_lockmode(lock_mode) return query.scalar() > 0 return False BaseModel.exist = exist
@classmethod def set_attr(cls, session, id, attr, value): if hasattr(cls, ‘id’): session.query(cls).filter(cls.id == id).update({ attr: value }) session.commit() BaseModel.set_attr = set_attr @classmethod def set_attrs(cls, session, id, attrs): if hasattr(cls, ‘id’): session.query(cls).filter(cls.id == id).update(attrs) session.commit() BaseModel.set_attrs = set_attrs 虽然很拙劣,但确实能用。顺便还附送了一些有用的玩意,你懂的。 2.设置 declarative_base() 的 cls 参数: 复制代码 代码如下:BaseModel = declarative_base(cls=ModelMixin) 这种方法不需要执行“BaseModel.get_by_id = get_by_id”之类的代码。不足之处就是 PyCharm 仍然无法找到这些方法的位 置。 3.设置 __abstract__ 属性: 复制代码 代码如下:class BaseModel(BaseModel): __abstract__ = True __table_args__ = { # 可以省掉子类的 __table_args__ 了 ‘mysql_engine’: ‘InnoDB’, ‘mysql_charset’: ‘utf8’ } # … 这种方法最简单,也可以继承出多个类。 如何正确使用事务? 如何正确使用事务? 假设有一个简单的银行系统,一共两名用户: 复制代码 代码如下:class User(BaseModel): __tablename__ = ‘user’ id = Column(Integer, primary_key=True) money = Column(DECIMAL(10, 2)) class TanseferLog(BaseModel): __tablename__ = ‘tansefer_log’ id = Column(Integer, primary_key=True) from_user = Column(Integer, ForeignKey(‘user.id’, ondelete=’CASCADE’, onupdate=’CASCADE’)) to_user = Column(Integer, ForeignKey(‘user.id’, ondelete=’CASCADE’, onupdate=’CASCADE’)) amount = Column(DECIMAL(10, 2)) user = User(money=100) session.add(user) user = User(money=0) session.add(user) session.commit() 然后开两个 session,同时进行两次转账操作: 复制代码 代码如下:session1 = DB_Session() session2 = DB_Session() user1 = session1.query(User).get(1) user2 = session1.query(User).get(2)
分享到:
收藏