logo资料库

0.6μmCMOS工艺全差分运算放大器的设计.pdf

第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
资料共3页,全文预览结束
0.6μmCMOS工艺全差分运算放大器的设计 工艺全差分运算放大器的设计 本文设计的带共模反馈的两级高增益运算放大器结构分两级,第一级为套筒式运算放大器,用以达到高增益的 目的;第二级采用共源级电路结构,以增大输出摆幅。   0 引言引言      本文设计的带共模反馈的两级高增益运算放大器结构分两级,第一级为套筒式运算放大器,用以达到高增益的目的;第二 级采用共源级电路结构,以增大输出摆幅。另外还引入了共模反馈以提高共模抑制比。该方案不仅从理论上可满足高增益、高 共模抑制比的要求,而且通过了软件仿真验证。结果显示,该结构的直流增益可达到80 dB,相位裕度达到80°,增益带宽为 74 MHz。   1 运放结构 运放结构   通常所用的运算放大器的结构基本有三种,即简单两级运放、折叠共源共栅和套筒式共源共栅。其中两级结构有大的输出 摆幅,但是频率特性比较差,一般用米勒补偿,可使得相位裕度变小,因而电路的稳定性会变差;套筒式的共源共栅结构,虽 然频率特性较好,又因为它只有两条主支路,所以功耗比较小。但是这些都是以减小输入范围和输出摆幅为代价的。因此,为 了缓解套筒式结构对输入电压范围的限制,本文提出了折叠式运算放大器结构的思路。折叠式结构比套筒式结构有更大的输入 共模电平范围,但却以减小增益和带宽,增大噪声和功耗为代价的。考虑到折叠共源共栅输入级结构的功耗比较大,因此,本 文选择套筒式共源共栅结构作为输入级,最后选择了如图1所示的全差分结构的两级运放结构。    1..1 主运放结构 主运放结构   全差分运算放大电路对环境噪声具有更强的抑制能力。而套筒式结构则具有高增益、低功耗以及频率特性好等特点。因 此,第一级放大结构(即M0~M8)采用套筒式全差分放大器结构作为输入级。第二级(即M9~M11)为共源结构,以改善套筒式 结构输出摆幅小的缺点,同时相应提高运算放大器的开环增益。但是,随着级数的增加,必然会增加电路的零极点,这对系统 稳定性的要求更高。因此,必须引入补偿电容C3来补偿额外的极点,使电路的相位裕度能满足要求,并使性能稳定。另外, 图1申的VB1用于提供尾电流镜偏置,VB2和VB3分别用于为PMOS和NMOS提供静态直流偏置,这三个偏置电压均提供有偏 置电路。   对该运算放大器进行小信号分析,可以计算出第一级套筒式全差分结构的放大倍AV1,公式为:   其中,gm2、gm4、gm6分别表示M2、M4、M6的跨导,r2、r4、r6、r8分别表示M2、M4、M6、M8管的输出电阻。 A v1≈g2[(gm4τ2τ4)·(gm6τ6τs)]   第二级共源级放大结构的单端放大倍AV2可用下式计算: AV2=-gM10r10   其中,gM10、r10分别表示M10管的跨导和输出电阻。因此,整个米勒补偿型运算放大器的开环增益A v可以用第一级和 第二级的放大倍数之积来表示:   1..2 共模反馈电路 共模反馈电路 A v="A" v1A v2
  由于本设计采用的是全差分结构,所以,为了通过稳定直流来稳定输出共模电压,保证输出级工作于线性区,通常需要一 个共模反馈(   1..3 偏置电路 偏置电路   偏置电路主要用于提供折叠共源共栅放大器及共模反馈的偏置电压。本文采用如图3所示的宽摆幅电流源偏置电路结构。 在共源共栅输入级中,通常需要三个电压偏置。为了使输入级的动态范围大一些,图3中的宽摆幅电流源用来产生所需要的三 个偏置电压。根据宽摆幅电流源的设计要求,设计时必须满足以下关系式:   2 电路仿真结果 电路仿真结果   采用HSPICE电路仿真工具,并利用上华0.6μm
  3 结束语结束语   本文给出了一种低电压全差分套筒式运算放大器的设计方法,同时对该设计方法进行了仿真,从仿真结果可以看出,在保 证高增益、低功耗的同时,该设计还可以满足20 MHz流水线模数转换器中运放的设计要求。
分享到:
收藏