logo资料库

过程设备设计第三版(郑津洋)课后习题答案.doc

第1页 / 共35页
第2页 / 共35页
第3页 / 共35页
第4页 / 共35页
第5页 / 共35页
第6页 / 共35页
第7页 / 共35页
第8页 / 共35页
资料共35页,剩余部分请下载后查看
过程设备设计题解 1.压力容器导言 思考题 1. 压力容器主要由哪几部分组成?分别起什么作用? 答:压力容器由筒体、封头、密封装置、开孔接管、支座、安全附件六大部件组成。 筒体的作用:用以储存物料或完成化学反应所需要的主要压力空间。 封头的作用:与筒体直接焊在一起,起到构成完整容器压力空间的作用。 密封装置的作用:保证承压容器不泄漏。 开孔接管的作用:满足工艺要求和检修需要。 支座的作用:支承并把压力容器固定在基础上。 安全附件的作用:保证压力容器的使用安全和测量、控制工作介质的参数,保证压力容器的 使用安全和工艺过程的正常进行。 2. 介质的毒性程度和易燃特性对压力容器的设计、制造、使用和管理有何影响? 答:介质毒性程度越高,压力容器爆炸或泄漏所造成的危害愈严重,对材料选用、制造、检 验和管理的要求愈高。如 Q235-A 或 Q235-B 钢板不得用于制造毒性程度为极度或高度危害介 质的压力容器;盛装毒性程度为极度或高度危害介质的容器制造时,碳素钢和低合金钢板应 力逐张进行超声检测,整体必须进行焊后热处理,容器上的 A、B 类焊接接头还应进行 100% 射线或超声检测,且液压试验合格后还得进行气密性试验。而制造毒性程度为中度或轻度的 容器,其要求要低得多。毒性程度对法兰的选用影响也甚大,主要体现在法兰的公称压力等 级上,如内部介质为中度毒性危害,选用的管法兰的公称压力应不小于 1.0MPa;内部介质为 高度或极度毒性危害,选用的管法兰的公称压力应不小于 1.6MPa,且还应尽量选用带颈对焊 法兰等。 易燃介质对压力容器的选材、设计、制造和管理等提出了较高的要求。如 Q235-A·F 不 得用于易燃介质容器;Q235-A 不得用于制造液化石油气容器;易燃介质压力容器的所有焊缝 (包括角焊缝)均应采用全焊透结构等。 3. 《压力容器安全技术监察规程》在确定压力容器类别时,为什么不仅要根据压力高低, 还要视压力与容积的乘积 pV 大小进行分类? 答:因为 pV 乘积值越大,则容器破裂时爆炸能量愈大,危害性也愈大,对容器的设计、制造、 检验、使用和管理的要求愈高。 4. 《压力容器安全技术监察规程》与 GB150 的适用范围是否相同?为什么? 答:不相同。 《压力容器安全技术监察规程》的适用范围:○1 最高工作压力≥0.1MPa(不含液体静压 力);○2 内直径(非圆形截面指其最大尺寸)≥0.15m,且容积≥0.025m3;○3 盛装介质为气 体、液化气体或最高工作温度高于等于标准沸点的液体。 GB150 的适用范围:○1 0.1MPa≤p≤35MPa,真空度不低于 0.02MPa;○2 按钢材允许的使 用温度确定(最高为 700℃,最低为-196℃);○3 对介质不限;○4 弹性失效设计准则和失稳 失效设计准则;○5 以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;○6 最大应力理论;○7 不适用疲劳分析容器。 1
GB150 是压力容器标准是设计、制造压力容器产品的依据;《压力容器安全技术监察规程》 是政府对压力容实施安全技术监督和管理的依据,属技术法规范畴。 5. GB150、JB4732 和 JB/T4735 三个标准有何不同?它们的适用范围是什么? 答:JB/T4735《钢制焊接常压容器》与 GB150《钢制压力容器》属于常规设计标准;JB4732 《钢制压力容器—分析设计标准》是分析设计标准。JB/T4735 与 GB150 及 JB4732 没有相互 覆盖范围,但 GB150 与 JB4732 相互覆盖范围较广。 GB150 的适用范围: ○1 设计压力为 0.1MPa≤p≤35MPa,真空度不低于 0.02MPa;○2 设 计温度为按钢材允许的使用温度确定(最高为 700℃,最低为-196℃);○3 对介质不限;○4 采用弹性失效设计准则和失稳失效设计准则;○5 应力分析方法以材料力学、板壳理论公式为 基础,并引入应力增大系数和形状系数;○6 采用最大应力理论;○7 不适用疲劳分析容器。 JB4732 的适用范围:○1 设计压力为 0.1MPa≤p<100MPa,真空度不低于 0.02MPa;○2 设 计温度为低于以钢材蠕变控制其设计应力强度的相应温度(最高为 475℃);○3 对介质不限; ○4 采用塑性失效设计准则、失稳失效设计准则和疲劳失效设计准则,局部应力用极限分析和 安定性分析结果来评定;○5 应力分析方法是弹性有限元法、塑性分析、弹性理论和板壳理论 公式、实验应力分析;○6 采用切应力理论;○7 适用疲劳分析容器,有免除条件。 JB/T4735 的适用范围: ○1 设计压力为-0.02MPa≤p<0.1MPa;○2 设计温度为大于-20~ 350℃(奥氏体高合金钢制容器和设计温度低于-20℃,但满足低温低应力工况,且调整后的设 计温度高于-20℃的容器不受此限制);○3 不适用于盛装高度毒性或极度危害的介质的容器; ○4 采用弹性失效设计准则和失稳失效设计准则;○5 应力分析方法以材料力学、板壳理论公 式为基础,并引入应力增大系数和形状系数;○6 采用最大应力理论;○7 不适用疲劳分析容 器。 2.压力容器应力分析 思考题 1. 一壳体成为回转薄壳轴对称问题的条件是什么? 答:几何形状、承受载荷、边界支承、材料性质均对旋转轴对称。 2. 推导无力矩理论的基本方程时,在微元截取时,能否采用两个相邻的垂直于轴线的横截 面代替教材中与经线垂直、同壳体正交的圆锥面?为什么? 答:不能。 如果采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面, 这两截面与壳体的两表面相交后得到的两壳体表面间的距离大于实际壳体厚度,不是实际壳 体厚度。建立的平衡方程的内力与这两截面正交,而不是与正交壳体两表面的平面正交,在 2
该截面上存在正应力和剪应力,而不是只有正应力,使问题复杂化。 3. 试分析标准椭圆形封头采用长短轴之比 a/b=2 的原因。 答:a/b=2 时,椭圆形封头中的最大压应力和最大拉应力相等,使椭圆形封头在同样壁厚的 情况下承受的内压力最大,因此 GB150 称这种椭圆形封头为标准椭圆形封头 4. 何谓回转壳的不连续效应?不连续应力有哪些特征,其中β与 是什么? 答:回转壳的不连续效应:附加力和力矩产生的变形在组合壳连接处附近较大,很快变小, 对应的边缘应力也由较高值很快衰减下来,称为“不连续效应”或“边缘效应”。 不连续应力有两个特征:局部性和自限性。 局部性:从边缘内力引起的应力的表达式可见,这些应力是 增大,很快衰减至 0。 不自限性:连续应力是由于毗邻壳体,在连接处的薄膜变形不相等,两壳体连接边缘的变形 受到弹性约束所致,对于用塑性材料制造的壳体,当连接边缘的局部产生塑性变形,弹性约 束开始缓解,变形不会连续发展,不连续应力也自动限制,这种性质称为不连续应力的自限 性。 的函数随着距连接处距离的 两个参数的物理意义 xe  Rt β的物理意义:   4   2 13   Rt 反映了材料性能和壳体几何尺寸对边缘效应影响范围。该值 越大,边缘效应影响范围越小。 Rt 的物理意义:该值与边缘效应影响范围的大小成正比。反映边缘效应影响范围的大小。 5. 单层厚壁圆筒承受内压时,其应力分布有哪些特征?当承受内压很高时,能否仅用增加 壁厚来提高承载能力,为什么? 答:应力分布的特征:○1 周向应力σθ及轴向应力σz 均为拉应力(正值),径向应力σr 为压 应力(负值)。在数值上有如下规律:内壁周向应力σθ有最大值,其值为:  max  Kpi K 2 2   1 1 , 而在外壁处减至最小,其值为  min  pi 2 2  1 K ,内外壁σθ之差为 pi;径向应力内壁处为-pi, 随着 r 增加,径向应力绝对值逐渐减小,在外壁处σr=0。○2 轴向应力为一常量,沿壁厚均 匀分布,且为周向应力与径向应力和的一半,即  z 的不均匀程度与径比 K 值有关。   r  2 。○3 除σz 外,其他应力沿厚度 不能用增加壁厚来提高承载能力。因内壁周向应力σθ有最大值,其值为: 1 1 随 K 值增加,分子和分母值都增加,当径比大到一定程度后,用增加壁厚的方法降低壁中应 力的效果不明显。 Kpi K    max  2 2 , 6. 单层厚壁圆筒同时承受内压 pi 与外压 po 用时,能否用压差 p  p i  p o 代入仅受内压或仅 受外压的厚壁圆筒筒壁应力计算式来计算筒壁应力?为什么? 3
答:不能。从 Lamè公式  p i  p i   2 RRp  0 0 2 R  0 2 RRp  0 0 2 R  0  2 i 2 R i  2 i 2 R i 1 2 r 1 2 r  r      z  2 Rp i i 2 R 0 2 Rp i i 2 R 0 2 Rp i i 2 R 0       2 Rp 0 0 2 R i 2 Rp 0 0 2 R i 2 Rp 0 0 2 R i 可以看出各应力分量的第一项与内压力和外 压力成正比,并不是与 p  p i  p o 成正比。 而 径 向 应 力 与 周 向 应 力 的 第 二 项 与 p  成 正 比 。 因 而 不 能 用 p o p i  p  p i  p o 表示。 7. 单层厚壁 圆筒在内压与温差同时作用 时,其综合应力沿壁厚如何分布?筒壁屈服 发生在何处?为什么? 答:单层厚壁圆筒在内压与温差同时作用时, 其综合应力沿壁厚分布情况题图。内压内加 热时,综合应力的最大值为周向应力,在外 壁,为拉伸应力;轴向应力的最大值也在外 壁,也是拉伸应力,比周向应力值小;径向应力的最大值在外壁,等于 0。内压外加热,综 合应力的最大值为周向应力,在内壁,为拉伸应力;轴向应力的最大值也在内壁,也是拉伸 应力,比周向应力值小;径向应力的最大值在内壁,是压应力。 筒壁屈服发生在:内压内加热时,在外壁;内压外加热时,在内壁。是因为在上述两种情况 下的应力值最大。 思考题 7 图 8. 为什么厚壁圆筒微元体的平衡方程     r dr  r dr ,在弹塑性应力分析中同样适用? 答:因平衡方程的建立与材料性质无关,只要弹性和弹塑性情况下的其它假定条件一致,建 立的平衡方程完全相同。 9. 一厚壁圆筒,两端封闭且能可靠地承受轴向力,试问轴向、环向、径向三应力之关系式  z   r  2 ,对于理想弹塑性材料,在弹性、塑性阶段是否都成立,为什么? 答:对于理想弹塑性材料,在弹性、塑性阶段都成立。 在弹性阶段成立在教材中已经有推导过程,该式是成立的。由拉美公式可见,成立的原因是 轴向、环向、径向三应力随内外压力变化,三个主应力方向始终不变,三个主应力的大小按 同一比例变化,由式  z   r  2 可见,该式成立。对理想弹塑性材料,从弹性段进入塑性 4
段,在保持加载的情况下,三个主应力方向保持不变,三个主应力的大小仍按同一比例变化, 符合简单加载条件,根据塑性力学理论,可用全量理论求解,上式仍成立。 10. 有两个厚壁圆筒,一个是单层,另一个是多层圆筒,二者径比 K 和材料相同,试问这两 个厚壁圆筒的爆破压力是否相同?为什么? 答:从爆破压力计算公式看,理论上相同,但实际情况下一般不相同。爆破压力计算公式中 没有考虑圆筒焊接的焊缝区材料性能下降的影响。单层圆筒在厚壁情况下,有较深的轴向焊 缝和环向焊缝,这两焊缝的焊接热影响区的材料性能变劣,不易保证与母材一致,使承载能 力下降。而多层圆筒,不管是采用层板包扎、还是绕板、绕带、热套等多层圆筒没有轴向深 焊缝,而轴向深焊缝承受的是最大的周向应力,圆筒强度比单层有轴向深焊缝的圆筒要高, 实际爆破时比单层圆筒的爆破压力要高。 11. 预应力法提高厚壁圆筒屈服承载能力的基本原理是什么? 答:使圆筒内层材料在承受工作载荷前,预先受到压缩预应力作用,而外层材料处于拉伸状 态。当圆筒承受工作压力时,筒壁内的应力分布按拉美公式确定的弹性应力和残余应力叠加 而成。内壁处的总应力有所下降,外壁处的总应力有所上升,均化沿筒壁厚度方向的应力分 布。从而提高圆筒的初始屈服压力,更好地利用材料。 12. 承受横向均布载荷的圆形薄板,其力学特征是什么?其承载能力低于薄壁壳体的承载能 力的原因是什么? 答:承受横向均布载荷的圆形薄板,其力学特征是:○1 承受垂直于薄板中面的轴对称载荷; ○2 板弯曲时其中面保持中性;○3 变形前位于中面法线上的各点,变形后仍位于弹性曲面的 同一法线上,且法线上各点间的距离不变;○4 平行于中面的各层材料互不挤压。 其承载能力低于薄壁壳体的承载能力的原因是:薄板内的应力分布是线性的弯曲应力,最大 应力出现有板面,其值与  tRp 成正比;而薄壁壳体内的应力分布是均匀分布,其值与  2tRp tR 情况下,按薄板和薄壳的定义, 成正比。同样的 就远小于薄壳承受的压力 p 了。 13. 试比较承受均布载荷作用的圆形薄板,在周边简支和固支情况下的最大弯曲应力和挠度 的大小和位置。 答:○1 周边固支情况下的最大弯曲应力和挠度的大小为: ,而薄板承受的压力 p  tR tR  2  max 2 3 pR 2 4 t w f max  4 pR  64 D ○2 周边简支情况下的最大弯曲应力和挠度的大小为:  max   33 2  pR  2 8 t w s max  4 pR  64 D 5 1     ○3 应力分布:周边简支的最大应力在板中心;周边固支的最大应力在板周边。两者的最大挠 度位置均在圆形薄板的中心。 5
○4 周边简支与周边固支的最大应力比值   r   r   周边简支与周边固支的最大挠度比值 5 1 w w s max f max s max f max  3  2  3.0   65.1         3.0 3.05  3.01   08.4 其结果绘于下图 14. 试述承受均布外压的回转壳破坏的形式,并与承受均布内压的回转壳相比有何异同? 答:承受均布外压的回转壳的破坏形式主要是失稳,当壳体壁厚较大时也有可能出现强度失 效;承受均布内压的回转壳的破坏形式主要是强度失效,某些回转壳体,如椭圆形壳体和碟 形壳体,在其深度较小,出现在赤道上有较大压应力时,也会出现失稳失效。 15. 试述有哪些因素影响承受均布外压圆柱壳的临界压力?提高圆柱壳弹性失稳的临界压 力,采用高强度材料是否正确,为什么? 答:影响承受均布外压圆柱壳的临界压力的因素有:壳体材料的弹性模量与泊松比、长度、 直径、壁厚、圆柱壳的不圆度、局部区域的折皱、鼓胀或凹陷。 提高圆柱壳弹性失稳的临界压力,采用高强度材料不正确,因为高强度材料的弹性模量与低 强度材料的弹性模量相差较小,而价格相差往往较大,从经济角度不合适。但高强度材料的 弹性模量比低强度材料的弹性模量还量要高一些,不计成本的话,是可以提高圆柱壳弹性失 稳的临界压力的。 16. 求解内压壳体与接管连接处的局部应力有哪几种方法? 答:有:应力集中系数法、数值解法、实验测试法、经验公式法。 17. 圆柱壳除受到压力作用外,还有哪些从附件传递过来的外加载荷? 答:还有通过接管或附件传递过来的局部载荷,如设备自重、物料的重量、管道及附件的重 量、支座的约束反力、温度变化引起的载荷等。 18. 组合载荷作用下,壳体上局部应力的求解的基本思路是什么?试举例说明。 答:组合载荷作用下,壳体上局部应力的求解的基本思路是:在弹性变形的前提下,壳体上 局部应力的总应力为组合载荷的各分载荷引起的各应力分量的分别叠加,得到总应力分量。 如同时承受内压和温度变化的厚壁圆筒内的综合应力计算。 6
习题 1. 试应用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压 p,壳体中面半 径为 R,壳体 厚度为 t)。若壳体材料 由 20R(  b  400 MPa ,  s  245 MPa )改为 16MnR  b  510 MPa ,  s  345 MPa ( )时,圆柱壳中的应力如何变化?为什么? 解:○1 求解圆柱壳中的应力 应力分量表示的微体和区域平衡方程式:    R R 1 2   zp  F  r k  2  0 rp z dr  2 r  k  sin t 圆筒壳体:R1=∞,R2=R,pz=-p,rk=R,φ=π/2    pR t    pr k 2 sin   pR 2 t ○2 壳体材料由 20R 改为 16MnR,圆柱壳中的应力不变化。因为无力矩理论是力学上的静定问 题,其基本方程是平衡方程,而且仅通过求解平衡方程就能得 到应力解,不受材料性能常数的影响,所以圆柱壳中的应力分 布和大小不受材料变化的影响。 2. 对一标准椭圆形封头(如图所示)进行应力测试。该封头 中面处的长轴 D=1000mm,厚度 t=10mm,测得 E 点(x=0)处的 周向应力为 50MPa。此时,压力表 A 指示数为 1MPa,压力表 B 的指示数为 2MPa,试问哪一个压力表已失灵,为什么? 解:○1 根据标准椭圆形封头的应力计算式计算 E 的内压力: 标 准 椭 圆 形 封 头 的 长 轴 与 短 轴 半 径 之 比 为 2 , 即 a/b=2 , a=D/2=500mm。在 x=0 处的应力式为:    2 pa 2 bt p  2 bt   2 a  2  2 10  50  500  1 MPa ○2 从上面计算结果可见,容器内压力与压力表 A 的一致,压力表 B 已失灵。 3. 有一球罐(如图所示),其内径为 20m(可视为中面直径),厚度为 20mm。内贮有液氨, 球罐上部尚有 3m 的气态氨。设气态氨的压力 p=0.4MPa,液氨密度为 640kg/m3,球罐沿平行 圆 A-A 支承,其对应中心角为 120°,试确定该球壳中的薄膜应力。 解:○1 球壳的气态氨部分壳体内应力分布: R1=R2=R,pz=-p pR t   pR 2 t       h φ0       pR 2 t   100 MPa  pr k 2 sin  10000 4.0  2 20  7
○2 支承以上部分,任一φ角处的应力:R1=R2=R,pz=-[p+ ρg R(cosφ0-cosφ)],r=Rsin φ,dr=Rcosφdφ sin  0  2 7 10 2  10  51 10 cos  0  7.0 由区域平衡方程和拉普拉斯方程:  cos sin  p  2 r cos  gR   rdr   0 2 tR    2   gRp   2 gRpR     gRpR     r r 0 r 0  2 rdr cos      0  sin  sin  0 2 sin   0 cos 2 t cos 2  3 2 gR     0   2 sin  0 2   2 sin cos 2 3  2 3 sin  d  cos gR   cos 3 t gR  2   0     0  3  0 3   3 cos 3 cos   2 sin   R 2 sin t    p 2   sin 2   2 sin  0   gR  cos  0 2    sin 2   2 sin  0  cos   1 3 3   3 cos  0       Rp z t  0  t cos     p   cos     p    cos  0  t R 2 sin t    p 2   sin 2   2 sin cos  gR  R     gR  R   0   gR  cos  0 2    sin 2   2 sin  0  cos   1 3 3   3 cos  0        sin 2   2 sin  0    6 10   sin 2   cos  0 2  sin 2   2 sin  0  cos   1 3 3   3 cos  0       gR     51.0   8   t 02.0 R 2 sin 10 sin      p 2  2.0  2    81.9 40601   500  221974.4  2 sin  5   sin 22.2 2 sin   5 sin2.22 2 sin   2 2      35.0  sin  2    51.0   cos 3   1 3 7.0 3    0.343       cos  3    sin   2    51.0  51.0 2.1    20928  cos 3   1.2 cos 3   042.12 0.343    MPa
分享到:
收藏