logo资料库

Modern Quantum Mechanics答案.pdf

第1页 / 共130页
第2页 / 共130页
第3页 / 共130页
第4页 / 共130页
第5页 / 共130页
第6页 / 共130页
第7页 / 共130页
第8页 / 共130页
资料共130页,剩余部分请下载后查看
Solution Manual
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Modern Quantum Mechanics Solutions Manual /. /. Sakurai Late, University of California, Los Angeles San Fu Tuan, Editor University of Hawaii, Manoa THE BENJAMIN/CUMMINGS I J3LISHING COMPANY, INC. Menlo Park, California • Reading, Massachusetts Don Mills, Ontario * Wokingham, U.K. • Amsterdam • Sydney Singapore • Tokyo - Mexico City • Bogota • Santiago • San Juan
Copyright © 1985 by Addison-Wcslcy Publishing Co., The Advanced Book Program, 350 Bridge Parkway, Redwood C'rty, CA 94065 All rights reserved. Mo i*arl of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United Slates of America. Published simultaneously in Canada. I SEN 0-8053-7502-3 4 5 6 7 MQ 9 5 9 4 9 3 92
Contents 1 Fundamental Concepts 2 Quantum Dynamics 3 Theory of Angular Momentum 4 Symmetry in Quantum Mechanics 5 Approximation Methods 6 Identical Particles 7 Scattering Theory
Chapcer 1 1. [A3,CO] = ABCD - CDAB - ABCD + ACBD - ACSD - ACDB + ACDB + CAD3 - CADB - 2. 3. CDAB = A{C,B}D - AC{D,B) + {C,A}DB - C{D,A>B. (a) X = cr(c^X) • tr(£ a^o^o^) • I 3^2(5^ = 2a^ (where we have used because tr(o , cr(X) - 2a + Ea o Q t l l ) - 0. Next evaluate tr(c.o..) = CrOiCOjOj + o o j >) = 2 6 ^ ). Hence a i * 4 tr(X), a^ • Q X). k H cr(c (b) a with X = Q - '^(X^ + X ), while 2 2 and i,j - 1,2. The result is * can be explicitly evaluated from ) , a - lj(X + X l 12 2 1 • 4 trCo^X) + -. |(-X 21 2 X ), and a 1 2 • 4( X - X n 2 2 ). 3 a.a = a a +c a + oa zz y y xx x y z a +ia x y -J * det (o.t) = -|1|2. Without loss of generality, choose n along positive z-direction, then exp(±io.n<)>/2) = 1 cos $/2 t ia cos $/2 + isin 4>/2, then sin /2, and if B is defined to be B = z exp(io 4>/2)o.a exp(-io $/2) z z B*B a z (a -ia x )B2 y (a +ia )B*2 —a B*B Since B*B » cos2 <}>/2 + sin2 $/2 - 1, det [exp(ia^/Da.a x ex?(-io */2)]» - (a,2 + a 2 + a 2) = -|a|2, that is determinant Is z x y z
invariant under specified operation. Next we note / a' a'-ia' V a'+ia* \ x y -a* z a • (a +ia )(cos* -isin$) . y (a -ia )(cos<: + isin$) * y -a z hence a^ • a^, a^ = a^cos-J + a^sin*, a^ = a cos<> - a^sir.^. This is a counter-clockwise rotation, about z-axis through angle * in x-y plane. (a) Note tr(XY) = E, - ,E „ (by closure property) - . Z „ (by rearrangement) = y a , a |„ . Since a" is a dummy summation variable, relabel a" • har.c. tr(rf) - tr(YX). (b) <(XY)+a'|a"> - = - m . Therefore (XY)+ = Y+X+. (c) Take exp[if(A)]|a> = (1 + if (A) - = (1 + if (a) - t £2 °^ + assume that A|a> • aja>. Therefore exp(if(A)] • Eexp[if(a)][a>} has been used. (d) Z, • ,(x") - |, * - J, x ^ " exp[if(o)]|o>. where we *(x')* )|a> a a 2 * - E, <^'| a 'xa'|x*> - <$*!$•>. (a) |a><0| - |, |„ |a,xa"|o.xB|a, ,x a "|- J, |„ |a'xa"| x (<«'|o*>. Hence |o><8| - [ < a( i )| > < a( J )| B > * ], .here a
expression inside square bracket is the (i,J) matrix element, (b) ja> = js = K/2> - |+>, |S> = |s = tf/2> = k[\+> + j->]. Hence <+|a><-!s> i <- a><- 8> i * Given A|i> - a^\i> and A|j> »" a^|j>. The normalized state vector |i> + |j> is of form |t|/> » aj|j>] where a^, a^ are real numbers if A is Hermitian; but for a^ t |£> + |j>]. Hence A(*> = (l/ZlMaJ^ + = clearly r.h.s. is a state vector distinct from jij;>. However under the condition that | i> and |j> arc degenerate (i.e. - a), then A\-j>> a[(l//2)(|i> + |j>)] -a|i(i> and |*> or |i>+ |j> is also an eigenket of A. (a) Let k> c { | a * >> and A|a'> - a'|a" * Then since II, (A - a')|£> is product over all eigenvalues, and |c> * E, |a'> must therefore satisfy n, (A-a')|£> - 0. Hence n, (A-a') is the null operator. n m n | , (A-a") I , (*'-«"> , a'Va* (a'-a") |a •mi ( b) a"fa' (a'-a") |a Hence 8 J €> - , ^ ^ ) U> " |a'>. The operator therefore projects out of ket |s>, its ja'> component. „J a a a l> m 'a *'
z (c) Let A = S a'2+K/2 ^Sz " we have 8 - + , than ft, (S^-a') - (S - tf/2)(S z z + K/2). Hence evidently a' > lt :> " °« T1*1-3 verifies (a) above. For case (b) (%, 0_ =• -(S z -tf/2)/X and S - «/2( |+><+| -j -> x <-|) while ket j£> - e_|5> • < - j s > | -> and 8 states. + J£> + {_><_j j-j->< are the projertion operators of |£> to |±> >. Hence 6 J5> - <+|?>|+> and ? + I The orthonormality property is <+]+> - <-|-> - 1, <+]-> - <-[+> « 0. Hence using the explicit representations of S^^ ia terms of linear combinations of bra-ket products, we obtain by elementary calculation [S Let n » ni + n j + n k, then n » singcosa, n • sinSsina, n - z and { S ^} = * S y ] - i e x a2/2)S ,S z x y y l j k i j k ± cos8 and j>.n • sinficosa S + singsina S + cosB S . Also due to x y z completeness property of the ket space |s\n;+> • a|+> + b|-> where- ]a|2 + |b|2 = 1 (normalization). Therefore the relation s'.njli.-r';+> * (ii/2) |£.n;+> [taking advantage of explicit representations S„ • j ( I+> * l- x+ D, < -! + leads to :- - M(-[+><-| + ! - > < + [ ), sz sy - 5<+| - !-><-!)] (sin6cosc - isin8sina)b + cosg a • a (singcosa + isingsina)a - cos3 b • b 2 2 Together with the normalization condition |a| + jbj • 1, we find a • cos(B/2)e a and b - sin(g/2)e b. From equation (la) we have a = — rr— , hence e b a - e . Choose 9 • 0, then 6, » a, ana i(9. -8 ) ia r . _ . sinB e~i0tb (x—cosS) a o js".S;+> - cos(B/2)|-«-> + sin(B/2)ela|->.
Modem Quantum Mechanics - Solutions 10. H = a(|l><2| + |l><2| + |2>. Let 11> = ( J) , 12> = (°) , <1| - (1,0) and <2| =» (0,1), H can be explicitly written using outer product of matrices as \ 1 -1/ The eigenvalues and corresponding eigenkets are obtained from (H - XI)X = 0 where X * f ] are eigenvectors and X are corresponding /Xl\ \x2/ eigenvalues determined from secular equation det (H - XI) * 0. This leads to X » */2a and x of X we have = (i/2 - = /2(2+/2) ' ^ °uS eigenvectors and eigenvalues are U> + (/2 - 1)J2> hence X » *if*/J*. l) a nd by n o r m a l i2ation 2 1 'V = /2(2 - % ' X~ ^ |l> - (/2 + 1)|2> 1*2* = /2(2 + 7T) ' x= -/ 2a 11. Rewrite H as H = 4( H + H U 22 )(|l><2|) + J (H S 11 - H 2 2 ) (11> x <2| + |2><+|) + 5 n (-i|+> x <-j+i|-><+|) + \ n (|+x+|-|-><-|). The analogy is:
分享到:
收藏