logo资料库

实代数几何算法.pdf

第1页 / 共664页
第2页 / 共664页
第3页 / 共664页
第4页 / 共664页
第5页 / 共664页
第6页 / 共664页
第7页 / 共664页
第8页 / 共664页
资料共664页,剩余部分请下载后查看
front-matter
1Introduction
2Algebraically Closed Fields
3Real Closed Fields
4Semi-Algebraic Sets
5Algebra
6Decomposition of Semi-Algebraic Sets
7Elements of Topology
8Quantitative Semi-algebraic Geometry
9Complexity of Basic Algorithms
10Cauchy Index and Applications
11Real Roots
12Cylindrical Decomposition Algorithm
13Polynomial System Solving
14Existential Theory of the Reals
15Quantifier Elimination
16Computing Roadmaps and Connected Components of Algebraic Sets
17Computing Roadmaps and Connected Components of Semi-algebraic Sets
back-matter
Algorithms and Computation in Mathematics • Volume 10 Editors Arjeh M. Cohen Henri Cohen David Eisenbud Michael F. Singer Bernd Sturmfels
Saugata Basu Richard Pollack Marie-Françoise Roy Algorithms in Real Algebraic Geometry Second Edition With 37 Figures 123
Saugata Basu Georgia Institute of Technology School of Mathematics Atlanta, GA 30332-0160 USA e-mail: saugata@math.gatech.edu Richard Pollack Courant Institute of Mathematical Sciences 251 Mercer Street New York, NY 10012 USA e-mail: pollack@cims.nyu.edu Marie-Françoise Roy IRMAR Campus de Beaulieu Université de Rennes I 35042 Rennes cedex France e-mail: Marie-Francoise.Roy@univ-rennes1.fr Library of Congress Control Number: 2006927110 Mathematics Subject Classification (2000): 14P10, 68W30, 03C10, 68Q25, 52C45 ISSN 1431-1550 ISBN-10 3-540-33098-4 Springer Berlin Heidelberg New York ISBN-13 978-3-540-33098-1 Springer Berlin Heidelberg New York ISBN 3-540-00973-6 1st edition Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2003, 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro- tective laws and regulations and therefore free for general use. Typeset by the authors using a Springer LATEX macro package Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig Cover design: design & production GmbH, Heidelberg Printed on acid-free paper 46/3100YL - 5 4 3 2 1 0
Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Algebraically Closed Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Definitions and First Properties . . . . . . 1.2 Euclidean Division and Greatest Common Divisor 1.3 Projection Theorem for Constructible Sets . . . . . . . . . . . 1.4 Quantifier Elimination and the Transfer Principle . . . . . . . 1.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 2 Real Closed Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Ordered, Real and Real Closed Fields 2.2 Real Root Counting . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Descartes’s Law of Signs and the Budan-Fourier The- orem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Sturm’s Theorem and the Cauchy Index . . . . . . . . 2.3 Projection Theorem for Algebraic Sets . . . . . . . . . . . . . . 2.4 Projection Theorem for Semi-Algebraic Sets . . . . . . . . . . 2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Quantifier Elimination and the Transfer Principle . . 2.5.2 Semi-Algebraic Functions . . . . . . . . . . . . . . . . . . 2.5.3 Extension of Semi-Algebraic Sets and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Puiseux Series 2.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 3 Semi-Algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Semi-algebraically Connected Sets . . . . . . . . . . . . . . . . . 3.3 Semi-algebraic Germs . . . . . . . . . . . . . . . . . . . . . . . . . 1 11 11 14 20 25 27 29 29 44 44 52 57 63 69 69 71 72 74 81 83 83 86 87
VI Table of Contents 3.4 Closed and Bounded Semi-algebraic Sets . . . . . . . . . . . . 3.5 Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . 3.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . Su 4.2.1 Resultant 4.2.2 Subresultant 4.2.3 Subresultant Co Co 4.1 Discriminant and 4.2 Resultant and Subresultant Coefficients 4 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bdiscriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . efficients . . . . . . . . . . . . . . . . . . efficients and Cauchy Index . . . . . . 4.3 Quadratic Forms and Root Counting . . . . . . . . . . . . . . . 4.3.1 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . 4.3.2 Hermite’s Quadratic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . . . . 4.4.2 Hilbert’s Nullstellensatz . . . . . . . . . . . . . . . . . . . 4.5 Zero-dimensional Systems . . . . . . . . . . . . . . . . . . . . . . 4.6 Multivariate Hermite’s Quadratic Form . . . . . . . . . . . . . 4.7 Projective Space and a Weak Bézout’s Theorem . . . . . . . . 4.8 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Polynomial Ideals 5 Decomposition of Semi-Algebraic Sets . . . . . . . . . . . . . . 5.1 Cylindrical Decomposition . . . . . . . . . . . . . . . . . . . . . . 5.2 Semi-algebraically Connected Components . . . . . . . . . . . 5.3 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Semi-algebraic Description of Cells . . . . . . . . . . . . . . . . 5.5 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8 Hardt’s Triviality Theorem and Consequences . . . . . . . . . 5.9 Semi-algebraic Sard’s Theorem . . . . . . . . . . . . . . . . . . . 5.10 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Simplicial Homology Theory 6 Elements of Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 The Homology Groups of a Simplicial Complex . . . . 6.1.2 Simplicial Cohomology Theory . . . . . . . . . . . . . . 6.1.3 A Characterization of H1 in a Special Case. . . . . . . 6.1.4 The Mayer-Vietoris Theorem . . . . . . . . . . . . . . . 93 94 99 101 101 105 105 110 113 119 119 127 132 132 136 143 149 153 157 159 159 168 170 172 174 181 183 186 191 194 195 195 195 199 201 206
Table of Contents 6.1.5 Chain Homotopy . . . . . . . . . . . . . . . . . . . . . . . 6.1.6 The Simplicial Homology Groups Are Invariant Under Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . 6.2 Simplicial Homology of Closed and Bounded Semi-algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Definitions and First Properties . . . . . . . . . . . . . . 6.2.2 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Homology of Certain Locally Closed Semi-Algebraic Sets 6.3.1 Homology of Closed Semi-algebraic Sets and of Sign Con- ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Homology of a Pair . . . . . . . . . . . . . . . . . . . . . . 6.3.3 Borel-Moore Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.4 Euler-Poincaré Characteristic 6.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 7 Quantitative Semi-algebraic Geometry . . . . . . . . . . . . . 7.1 Morse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Sum of the Betti Numbers of Real Algebraic Sets . . . . . . . 7.3 Bounding the Betti Numbers of Realizations of Sign Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Sum of the Betti Numbers of Closed Semi-algebraic Sets 7.5 Sum of the Betti Numbers of Semi-algebraic Sets . . . . . . . 7.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 8 Complexity of Basic Algorithms . . . . . . . . . . . . . . . . . . 8.1 Definition of Complexity . . . . . . . . . . . . . . . . . . . . . . . 8.2 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.1 Size of Determinants . . . . . . . . . . . . . . . . . . . . . 8.2.2 Evaluation of Determinants . . . . . . . . . . . . . . . . 8.2.3 Characteristic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.4 Signature of Quadratic Forms 8.3 Remainder Sequences and Subresultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 Remainder Sequences 8.3.2 Signed Subresultant Polynomials . . . . . . . . . . . . . 8.3.3 Structure Theorem for Signed Subresultants . . . . . . 8.3.4 Size of Remainders and Subresultants . . . . . . . . . . 8.3.5 Specialization Properties of Subresultants . . . . . . . 8.3.6 Subresultant Computation . . . . . . . . . . . . . . . . . 8.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . VII 209 213 221 221 223 226 226 228 231 234 236 237 237 256 262 268 273 280 281 281 292 292 294 299 300 301 301 303 307 314 316 317 322
VIII Table of Contents 9 Cauchy Index and Applications . . . . . . . . . . . . . . . . . . . 9.1 Cauchy Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.1 Computing the Cauchy Index . . . . . . . . . . . . . . . 9.1.2 Bezoutian and Cauchy Index . . . . . . . . . . . . . . . . 9.1.3 Signed Subresultant Sequence and Cauchy Index on an . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Number of Complex Roots with Negative Real Part . . . . . 9.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Hankel Matrices and Rational Functions 9.2.2 Signature of Hankel Quadratic Forms Interval 9.2 Hankel Matrices 10 Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1 Bounds on Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Isolating Real Roots . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Sign Determination . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 Roots in a Real Closed Field . . . . . . . . . . . . . . . . . . . . 10.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Computing the Cylindrical Decomposition 11 Cylindrical Decomposition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Outline of the Method . . . . . . . . . . . . . . . . . . . . 11.1.2 Details of the Lifting Phase . . . . . . . . . . . . . . . . 11.2 Decision Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Lower Bound for Quantifier Elimination . . . . . . . . . . . . . 11.5 Computation of Stratifying Families . . . . . . . . . . . . . . . 11.6 Topology of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 11.7 Restricted Elimination . . . . . . . . . . . . . . . . . . . . . . . . 11.8 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 12 Polynomial System Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 A Few Results on Gröbner Bases 12.2 Multiplication Tables . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Special Multiplication Table . . . . . . . . . . . . . . . . . . . . . 12.4 Univariate Representation . . . . . . . . . . . . . . . . . . . . . . 12.5 Limits of the Solutions of a Polynomial System . . . . . . . . 12.6 Finding Points in Connected Components of Algebraic Sets . 12.7 Triangular Sign Determination . . . . . . . . . . . . . . . . . . . 323 323 323 326 330 333 334 337 344 350 351 351 360 383 397 401 403 404 404 408 415 423 426 428 430 440 444 445 445 451 456 462 471 483 495
Table of Contents IX 12.8 Computing the Euler-Poincaré Characteristic of an Algebraic Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.9 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 13 Existential Theory of the Reals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1 Finding Realizable Sign Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2 A Few Applications . . . . . . . . . . . . . . . . 13.3 Sample Points on an Algebraic Set 13.4 Computing the Euler-Poincaré Characteristic of Sign Condi- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 14 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . . 14.1 Algorithm for the General Decision Problem . . . . . . . . . . 14.2 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . 14.3 Local Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4 Global Optimization 14.5 Dimension of Semi-algebraic Sets . . . . . . . . . . . . . . . . . 14.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 15 Computing Roadmaps and Connected Components of Alge- braic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1 Pseudo-critical Values and Connectedness . . . . . . . . . . . . 15.2 Roadmap of an Algebraic Set . . . . . . . . . . . . . . . . . . . . 15.3 Computing Connected Components of Algebraic Sets . . . . 15.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 16 Computing Roadmaps and Connected Components of Semi- algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1 Special Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2 Uniform Roadmaps 16.3 Computing Connected Components of Sign Conditions . . . 16.4 Computing Connected Components of a Semi-algebraic Set . 16.5 Roadmap Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 16.6 Computing the First Betti Number of Semi-algebraic Sets . 16.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 503 505 506 516 519 528 532 533 534 547 551 557 558 562 563 564 568 580 592 593 593 601 608 614 617 627 633 635 645 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
分享到:
收藏