logo资料库

bernese v5.2说明书(word版).docx

第1页 / 共146页
第2页 / 共146页
第3页 / 共146页
第4页 / 共146页
第5页 / 共146页
第6页 / 共146页
第7页 / 共146页
第8页 / 共146页
资料共146页,剩余部分请下载后查看
Bernese GNSS Software Version 5.2 Tutorial Processing Example Introductory Course Terminal Session Rolf Dach, Peter Walser August 2013 AIUB Astronomical Institute, University of Bern
Contents 1 Introduction to the Example Campaign 1.1 Stations in the Example Campaign . . . . . . . 1.2 Directory Structure . . . . . . . . . . . . . . . . 1.2.1 The DATAPOOL Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3 . . . . . . . . . . . . . . . 4 1.2.2 The Campaign–Directory Structure . . . . . . . . . . . . . . . . . . 1.2.3 Input Files for the Processing Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 The SAVEDISK Directory Structure . . . 2 Terminal Session: Monday . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Start the Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Select Current Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Campaign Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Menu Variables . . . . . . . . . 2.5 Generate A Priori Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Importing the Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Daily Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Terminal Session: Tuesday 3.1 Prepare Pole Information . . . . . . . . . . . . . 3.2 Generate Orbit Files . . . . . . . . . . . . . . . . 3.3 Data Preprocessing (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Receiver Clock Synchronization . . . . . . 3.3.2 Form Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 Preprocessing of the Phase Baseline Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Daily Goals . . . . . . . . . . . . . . . . . . . . . 4 Terminal Session: Wednesday 4.1 Data Preprocessing (II) 4.2 Produce a First Network Solution . . . . . . . . . . . . . . . . . . 4.3 Ambiguity Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 Ambiguity Resolution: Quasi–Ionosphere–Free (QIF) . . . 4.3.2 Ambiguity Resolution: Short Baselines . . . . . . . . . . . 4.3.3 Ambiguity Resolution: Bernese Processing Engine (BPE) 4.3.4 Ambiguity Resolution: Summary . . . . . . . . . . . . . . 4.4 Daily Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Terminal Session: Thursday 5.1 Final Network Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Check the Coordinates of the Fiducial Sites . . . . . . . . . . . . . . . . . 5.3 Check the Daily Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Compute the Reduced Solution of the Sessions . . . . . . . . . . . . . . 5.5 Velocity Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7 10 11 11 11 12 12 14 16 19 21 21 23 30 30 34 37 40 41 41 49 53 53 62 65 69 71 73 73 78 85 87 91 PageI
Contents 5.6 Daily Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 6 Additional Examples 6.1 Preparing Combined GPS and GLONASS IGS–Orbits . . . . . . . . . . 6.2 Kinematic Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Zero Difference Processing for Clock Estimation . . . . . . . . . . . . . . 6.1.1 Prepare Pole Information . . . . . . . . . . . . . . . . . . . . . . 6.1.2 Merging Precise Orbit Files . . . . . . . . . . . . . . . . . . . . . 6.1.3 Generating Standard Orbit Files . . . . . . . . . . . . . . . . . . 99 99 99 100 101 105 6.2.1 Estimating Kinematic Positions in a Double–Difference Solution . . 105 109 6.2.2 Extracting the Program Output from a Kinematic Positioning . . . 110 . 6.2.3 Further suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 111 . 115 . 122 . . 130 6.4 Simulation of Global Navigation Satellite Systems (GNSS) Observations . 131 131 6.4.1 Simulation of GNSS Observations . . . . . . . . . . . . . . . . . . . 6.4.2 Zero Difference Solution from Simulated GNSS Observations . . . 134 6.4.3 Double–Difference Solution from Simulated GNSS Observations . . 138 6.4.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Residual Screening . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.3 Generate Clock Solutions . . . . . . . . . . . . . . . . . . . . . . 6.3.4 Further suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PageII AIUB
1 Introduction to the Example Campaign 1.1 Stations in the Example Campaign Data from thirteen European stations of the International GNSS Service (IGS) net- work and from the EUREF Permanent Network (EPN) were selected for the example campaign. They are listed in Table 1.1. The locations of these stations are given in Figure 1.1. Three of the stations support only Global Positioning System (GPS) whereas all other sites provide data from both GPS and its Russian counterpart Globalьna sistema: Global Navigation Satellite Sys- tem (GLONASS). navigacionna sputnikova The observations for these stations are available for four days. Two days in year 2010 (day of year 207 and 208) and two in 2011 (days 205 and 206). In the ter- minal sessions you will analyze the data in order to obtain a velocity field based on final products from Center for Orbit Determination in Europe (CODE). For eight of these stations, coordinates and velocities are given in the IGb08 refer- ence frame, an IGS–specific realization of the ITRF2008 (see ${D}/STAT_LOG/ IGb08.snx). , ONSA PTBB WTZZ WTZR LAMA JOZ2 GANP WSRT HERT ZIM2 ZIMM TLSE MATE have been Receiver is tracking GPS/GLONASS Station with coordinates/velocities in IGb08 Between these days in 2010 and 2011 the receivers (LAMA, TLSE, WTZR) and the full equipment (WTZZ) changed. The receiver type, the antenna type, and the antenna height are also pro- vided in Table 1.1. Notice, that for three antennas (GANP, WTZR, ZIM2) values from an individual calibration are available For all other antennas only type–specific calibration results from the EPN processing. from the IGS processing (${X}/GEN/IGS08.ATX) are available. More details are provided in Table 1.2. Only in two cases where no calibration of the antenna/radome combination was available (ONSA, WSRT) the calibration values of the antenna without radome were used instead. With one exception (ONSA) even system–specific calibrations for GPS and GLONASS measurements are available. Figure 1.1: Stations used in example campaign GPS−only The distances between stations in the network are between 200 and 1000 km. are two pairs of receivers at one site included in the example dataset: the distance between ZIMM and ZIM2 is only 19 m. In Kötzting the receivers WTZR in Zimmerwald, There Page1
1IntroductiontotheExampleCampaign Table 1.1: List of stations used for the example campaign including receiver and antenna type as well as the antenna height. Station name GANP11515M001Ganovce, Slovakia Location HERT 13212M010 Hailsham, United Kingdom JOZ2 12204M002 Jozefoslaw, Poland Antenna Receiver type Antenna type Radome height TRIMBLE NETR8 TRM55971.00 NONE LEICA GRX1200GGPRO LEIAT504GG LEICA GRX1200GGPRO LEIAT504GG NONE NONE 0.0000 m 0.3830 m 0.0000 m LAMA12209M001Olsztyn, Poland 2010: LEICA GRX1200GGPRO LEIAT504GG LEIS 2011: LEICA GRX1200+GNSS MATE12734M008 Matera, Italy ONSA10402M004Onsala, Sweden PTBB 14234M001 Braunschweig, Germany 0.0600 m 0.0600 m 0.1010 m 0.9950 m LEIS NONE LEIAT504GG LEICA GRX1200GGPRO LEIAT504GG JPS E_GGD AOAD/M_B ASHTECH Z–XII3T ASH700936E OSOD SNOW 0.0562 m TLSE 10003M009 Toulouse, France 2010: TRIMBLE NETR5 WSRT 13506M005Westerbork, The Netherlands TRM59800.00 NONE 1.0530 m 2011: TRIMBLE NETR9 TRM59800.00 NONE AOA SNR–12 ACT AOAD/M_T DUTD 1.0530 m 0.3888 m WTZR 14201M010Kötzting, Germany 2010: LEICA GRX1200GGPRO WTZZ 14201M014Kötzting, Germany ZIM2 14001M008 Zimmerwald, Switzerland ZIMM14001M004Zimmerwald, Switzerland LEIAR25.R3 LEIT 0.0710 m 2011: LEICA GRX1200+GNSS LEIAR25.R3 2010: TPS E_GGD LEIT 0.0710 m TPSCR3_GGD CONE 0.2150 m 2011: JAVAD TRE_G3TH DELTA LEIT LEIAR25.R3 TRIMBLE NETR5 TRM59800.00 NONE TRIMBLE NETRS TRM29659.00 NONE 0.0450 m 0.0000 m 0.0000 m Page2 AIUB
OS Antenna type AOAD/M_B OD AOAD/M_T TD ASH700936E SNO W LEIAR25.R3 LEIT DU LEIAT504GG NON E ROBOT ROBOT ROBOT ROBOT ROBOT ROBOT used at stations ONSA WSRT PTBB WTZR, WTZZ(2011) JOZ2, HERT, MATE LAMA WTZZ(2010) ZIMM GANP TLSE, ZIM2 — — ROBOT ROBOT ROBOT ROBOT — ROBOT ROBOT Table 1.2: List of antenna/radome combinations used in the example campaign together with the available antenna calibration values in IGS08 model. 1.2DirectoryStructure Type of calibration for GLONASS ADOPTED from GP for GPS ADOPTED from NONE S ADOPTED from NONE ROBOT ROBOT LEIAT504GG LEIS TPSCR3_GGD CO and WTZZ are separated by less than 2 m — this is a short GPS/GLONASS base- NE line. TRM29659.00 NON E TRM55971.00 NON E TRM59800.00 NON E The receivers used at the stations MATE, ONSA, PTBB, and WSRT are connected to H-Maser clocks. The receiver type ASHTECH Z-XII3T used at PTBB was specifically developed for time and frequency applications. In 2011 both receivers in Kötzting (WTZR and WTZZ) were connected to the same H–Maser (EFOS 18). 1.2 Directory Structure The data belonging to this example campaign is included in the distribution of theBernese GNSSSoftware. Therefore, you may also use this document to generate solutions from the example dataset to train yourself in the use of theBerneseGNSSSoftwareoutside the environment of the BerneseIntroductoryCourse. There are three areas relevant for the data processing (in the environment of the Bernese Introductory Course they are all tory): located in the ${HOME}/GPSDATAdirec- ${D}: The DATAPOOL area is intended as an interface where all external files can be de- posited after their download. It can be used by several processing campaigns. ${P}: The CAMPAIGN52 directory contains all processing campaigns for the Version 5.2 of the BerneseGNSSSoftware. groups use ${P}/INTRO in their ${HOME} directory. In the BerneseIntroductoryCourseenvironment all ${S}: The SAVEDISK area shall serve as a product database where the result files from different processes/projects can be collected and archived. At the beginning it only contains reference files (*.*_REF) obtained with the example BPE from the distri- bution. BerneseGNSSSoftware,Version5.2 Page3
1IntroductiontotheExampleCampaign 1.2.1 The DATAPOOL Directory Structure (${D}) Motivation for the DATAPOOL area The idea of the DATAPOOL area is to place local copies of external files somewhere on your filesystem. starting the processing: It has several advantages compared to downloading the data each time when · The files are downloaded only once, even if they are used for several campaigns. · The data download can be organized with a set of scripts running independently from the Bernese GNSS Software environment, scheduled by the expected availability of the external files to download. · The processing itself becomes independent from the availability of external data sources. Structure and content of the DATAPOOL area The DATAPOOL area contains several subdirectories taking into account the different po- tential sources of files and their formats: RINEX : The data of GNSS stations is provided in Receiver INdependent EXchange for- mat (RINEX) files. The directory contains observation (Hatanaka–compressed) and navigation (GPS and GLONASS) files. These RINEX files are “originary” files that are not changed during the processing. The RINEX files can be downloaded from international data centers. Project–specific files are copied into this area. If you mix the station lists from different projects, take care on the uniqueness of the four–character IDs of all stations in the RINEX file names. HOURLY : The same as the RINEX directory but dedicated to hourly RINEX data as used for near real–time applications. Note: not all stations in this example provide hourly RINEX files. LEO : This directory is intended to host files which are necessary for Low Earth Orbiter (LEO) data processing. RINEX files are stored in the subdirectory RINEX (of the LEO directory). The corresponding attitude files are placed in the subdirectory ATTIT. These files are needed to run the example BPE on LEO orbit determination (LEOPOD. PCF). They are not used in the example during the BerneseIntroductoryCourse. SLR_NP : The Satellite Laser Ranging (SLR) data is provided in the quicklook normal point format. The directory contains the normal point files downloaded from the Interna- tional Laser Ranging Service (ILRS) data centers. These files are needed to run the example BPE on validating orbit using SLR ob- servations (SLRVAL.PCF). They are not used in the example during the Bernese IntroductoryCourse. Page4 AIUB
分享到:
收藏