2007 年宁夏石嘴山中考数学真题及答案
注意事项:
1. 考试时间 120 分钟,全卷总分 120 分.
2. 答题前将密封线内的项目填写清楚.
3. 答卷一律使用黑、蓝钢笔或圆珠笔.
4. 凡使用答题卡的考生,答卷前务必将答题卡上有关项目填写清楚.选择题的每小题选出
答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再
选涂其他答案.不使用答题卡的考生,将选择题的答案答在试卷上.
一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题 3 分,共 24 分)
1. 2 的相反数是(
C. 2
D.2
A.
1
2
)
1
2
B.
2.下列运算正确的是(
)
A. 2
a a
3
6
a
B. 8
a
4
a
2
a
C.
(
)ab
2
2
ab
D. 3
a
3
a
32
a
3.某校对 1200 名女生的身高进行了测量,身高在1.58 ~ 1.63 (单位:m)这一小组的频率
为 0.25,则该组的人数为(
A.150 人
B.300 人
4.2006 年国家统计局发布的数据表明,我国义务教育阶段在校学生人数共 16700 万人,用
科学记数法表示为(
C.600 人
D.900 人
)
)
A.
1.67 10 人 B.
6
1.67 10 人 C.
7
1.67 10 人 D.
8
1.67 10 人
9
5.下列图形中,即是中心对称图形又是轴对称图形的是(
A.等边三角形 B.菱形
6.如图, PA 为 O 的切线, A 为切点, PO 交 O 于点
B ,
,则sin AOP
4
,
C.等腰梯形
的值为(
OA
PA
)
3
)
D.平行四边形
A
P
B
O
A.
3
4
B.
3
5
C.
4
5
D.
4
3
7.如图,下列选项中不是..正六棱柱三视图的是(
)
A.
B.
C.
D.
8.某农场的粮食总产量为 1500 吨,设该农场人数为 x 人,平均每人占有粮食数为 y 吨,则
y 与 x 之间的函数图像大致是(
)
y
y
y
y
0
x
0
x
0
x
0
x
A.
B.
C.
D.
二、填空题(每小题 3 分,共 24 分)
9.分解因式: 2
4x
2
y
.
10.计算: 2
a b
(9
2
6
ab
)
(3
ab
)
.
11.在一次校园朗诵比赛中,七位评委给小丽打分的成绩如下:8.6,9.7,8.5,8.6,9.6,
8.6,7.2,则这组数据的中位数是
12.如图是弧长为8 cm 扇形,如果将 OA OB, 重合围成一个圆锥,
那么圆锥底面的半径是
cm.
.
O
A
B
13.一块正方形钢板上截去 3cm 宽的长方形钢条,剩下的面积是
54cm ,则原来这块钢板
2
的面积是
2cm .
14.如图, O 的半径为 5,弦
则 ACB
.
AB
, 是圆上一点,
5 3
C
C
B
O
A
15.在平面直角坐标系中,点 A 的坐标为 (1 2), ,将 OA 绕原点O 按顺时针方向旋转90 得
到OA ,则点 A 的坐标是
16.如图,网格中的小正方形边长均为 1, ABC△
点上,则 ABC△
.
中 AB 边上的高为
的三个顶点在格
.
A
C
B
三、解答题(共 24 分)
17.(6 分)
计算:
( 9)
0
3
64
5
1
2
2
.
18.(6 分)
解分式方程:
19.(6 分)
1
2
x
2
3
x
.
解不等式组
x
1
2
x
2
≥
0
x
,并利用数据表示不等式组的解集.
0
1
2
3
4
x
20.(6 分)
A B, 两个口袋中,都装有三个相同的小球,分别标有数字 1,2,3,小刚、小丽两人进行
摸球游戏.游戏规则是:小刚从 A 袋中随机摸一个球,同时小丽从 B 袋中随机摸一个球,
当两个球上所标数字之和为奇数时小刚赢,否则小丽赢.这个游戏对双方公平吗?通过列表
或画树状图加以说明.
四、解答题(共 48 分)
21.(6 分)
二次函数
y
2
ax
bx
(
c a
表:
, , , 是常数 ) 中,自变量 x 与函数 y 的对应值如下
a b c
0
1
1
2
1
3
(1)判断二次函数图象的开口方向,并写出它的顶点坐标.
(2)一元二次方程 2
ax
bx
c
0(
a
, , , 是常数 ) 的两个根 1
x
a b c
0
x, 的取值范围
2
是下列选项中的哪一个
.
①
③
1
2
1
2
x
2
30
,
2
0 2
,
x
2
x
1
x
1
2
5
2
②
1
x
1
④
1
x
1
x
2
1
2
,
2
1 3
,
2 2
x
2
5
2
2
22.(6 分)
通过对全区 2004 年至 2006 年旅游景点发展情况的调查,制成了全区旅游景点个数情况的条
形统计图和每年旅游景点游客人数平均数情况的条形统计图,利用这两张统计图提供的信
息,解答下列问题.
景点个数
50
39
30
万人/个
3.0
2.5
2.0
2004
2005
2006
年份
2004
2005
2006
年份
旅游景点个数情况的条形统计图
每年旅游景点游客人数平均数
情况的条形统计图
(1)这三年接待游客最多的年份是哪一年?
(2)这三年中平均每年接待游客多少人?
23.(8 分)
如图,将矩形纸片 ABCD 沿对角线 BD 折叠,点C 落在点 E 处, BE 交 AD 于点 F ,连结
AE .
证明:(1) BF DF
(2) AE
BD∥ .
.
E
F
A
D
B
C
24.(8 分)
某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修 3 天,剩下的
工作由甲、乙两个装修公司合作完成.工程进度满足如图所示的函数关系,该家庭共支付工
资 8000 元.
(1)完成此房屋装修共需多少天?
(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?
y(工作量)
0
3
5
x(天)
25.(10 分)
现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平等四边形的不
稳定性,操作步骤如下:
(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图 1).
(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图 2).
(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图 3).
在装卸纱窗的过程中,如图所示 的值不得小于81 ,否则纱窗受损.现将高 96cm 的矩
形纱窗恰好安装在上、下槽深分别为 0.9cm,高 96cm(上、下槽底间的距离)的窗框上.试
求合理安装纱窗时 的最大整数值.(下表提供的数据可供使用)
图 1
图 2
图 3
26.(10 分)
如图,在平面直角坐标系中,等腰梯形 AOBC 的四个顶点坐标分别为 (2 2 3)
A , , (0 0)
O ,,
(8 0)
(6 2 3)
C,, , .
B
(1)求等腰梯形 AOBC 的面积.
(2)试说明点 A 在以OB 的中点 D 为圆心,OB 为直径的圆上.
(3)在第一象限内确定点 M ,使 MOB△
坐标.
(3)点 1M 位于点 C 上时,
与 AOB△
1OM B△
与 OAB△
相似
此时点 1M 的坐标为 1(6 2 3)
过 B 点作 OB 的垂线交 OA 的延长线于 2M ,
M ,
2OM B△
与 OAB△
相似
此时点 2M 的坐标为 2(8 8 3)
过 B 点作 OB 的垂线交 OC 的延长线于 3M ,
M ,
3OM B△
与 OAB△
相似
M
此时点 3M 的坐标为 3
8 3
8
,
3
相似,求出所有符合条件的点 M 的
y
A
C
O
B
x
一、选择题(每小题 3 分,共 24 分)
题号
答案
1
D
2
D
3
B
二、填空题(每小题 3 分,共 24 分)
11
10
题号
9
答案 (2
x
y
)(2
x
y
)
2a
3
b
8.6
参考答案
4
C
12
4
5
B
6
C
7
A
13
81
14
15
60° (2
1),
8
B
16
或
5
13
5 13
13
x
x
24
分)
三、解答题( 6 6 6 6
················································································ 4 分
17.解:原式 1 4 5 4
2 ············································································································· 6 分
···············································································2 分
18.解:去分母得 3 4
解方程得 1x ································································································· 4 分
经检验 1x 是原分式方程的解············································································5 分
∴原分式方程的解是 1x ··················································································6 分
x ≤ ········································································ 1 分
19.解:解不等式(1)得
x ···················································································· 3 分
解不等式(2)得
能在数轴上正确表示出不等式组的解集································································ 5 分
≤ ·········································································· 6 分
∴不等式组的解集是 1
20.解:游戏不公平·························································································1 分
能正确画出树状图或表格·················································································· 3 分
2
1
2
x
P
(
奇数
)
4
9
P
(
偶数
)
5
9
···················································································· 5 分
48
分)
小丽获胜的可能性大·························································································6 分
四、解答题( 6 6 8 8 10 10
21.解(1)开口向下······················································································· 2 分
顶点坐标 (1 2), ································································································· 4 分
x, 的取值范围是③····································································· 6 分
x
(2)两个根 1
22.解:(1)2004 年接待游客人数: 30 2 60
2005 年接待游客人数: 39 3 117
2006 年接待游客人数: 50 2.5 125
接待游客最多的年份是 2006 年··········································································· 3 分
(2) 2 30 3 39 50 2.5
(万人)
(万人)
(万人)
60 117 125
(万人)
2
3
100.7
3
△
≌△
EDF
EBD
(或 ABF
这三年中全区平均每年接待游客 100.7 万人·························································· 6 分
)······························ 3 分
23.解:(1)能正确说明 ADB
···································································································· 4 分
BF DF∴
(其它方法参考以上标准给分).
)················································· 7 分
(2)能得出 AEB
∴ ∥ ···································································································· 8 分
(其它方法参考以上标准给分).
24.(1)方法 1
解:设一次函数的解析式(合作部分)是 y
, , 是常数)
(或 EAD
( 0
kx b
BDA
DBE
k b
BD
AE
k
由待定系数法解得 1
8
k
,
b
∴一次函数的表达式为 1
x
8
y
.
1
8
1
8
······································································· 2 分
x
1 1
8
x ,解得 9
当 1y 时, 1
8
∴完成此房屋装修共需 9 天··············································································· 4 分
方法 2
解:由正比例函数图像可知:甲的效率是 1
12
·························································1 分
乙工作的效率: 1
1
8 12
甲、乙合作的天数: 3
4
1
24
1
12
1
24
6
(天)
··············································································· 2 分
∵甲先工作了 3 天,∴完成此房屋装修共需 9 天····················································4 分
(2)由正比例函数图象可知:甲的工作效率是 1
12
················································· 5 分
4
9
(元)···························································8 分
····································································· 7 分
甲 9 天完成的工作量是: 1
12
3
4
∴甲得到的工资是: 3 8000 6000
25.解:能够合理装上平行四边形纱窗时的最大高度: 96 0.9 95.1
能够合理装上平行四边形纱窗时的高: 96sin 或 96 cos(90
)
°
96 0.987 94.752 95.1
当
∴此时纱窗能装进去,
当
∴此时纱窗能装进去.
当
∴此时纱窗装不进去.····················································································· 9 分
因此能合理装上纱窗时 的最大值是82°··························································10 分
(cm)··············· 2 分
··························5 分
81 °时,纱窗高: 96sin81
82 °时,纱窗高: 96sin82
83 °时,纱窗高: 96sin83
96 0.993 95.328 95.1
96 0.990 95.04 95.1
°
°
°
·
26.解:(1)
S
梯形
上底 下底 高 1 (4 8) 2 3 12 3
)
·································4 分
1 (
2
2
说明点 A 在圆上.
是直角三角形,说明点 A 在圆上.
(2)方法 1:得出 DO DA DB
OAB
方法 2:得出
方法 3:得出 2
OA
即 OAB△
(3)点 1M 位于点 C 上时,
°,即 OAB△
AB OB
90
2
1OM B△
,
2
与 OAB△
相似
是直角三角形,说明点 A 在圆上.························································· 7 分
M , ············································································8 分
此时点 1M 的坐标为 1(6 2 3)
过 B 点作 OB 的垂线交 OA 的延长线于 2M ,
此时点 2M 的坐标为 2(8 8 3)
过 B 点作 OB 的垂线交 OC 的延长线于 3M ,
2OM B△
与 OAB△
相似
3OM B△
与 OAB△
相似
M , ··········································································· 9 分
M
此时点 3M 的坐标为 3
8 3
, ········································································ 10 分
8
3