logo资料库

论文研究-无偏灰色预测模型递推解法及其优化.pdf

第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
资料共7页,全文预览结束
31 8  2011 8  Systems Engineering — Theory & Practice Vol.31, No.8 Aug., 2011 : 1000-6788(2011)08-1532-07 : N941.5 : A   1, 1, 1,  2 (1.  ,  210016; 2. , 321004)  !"#%"#&’*., / 234  78 , : ;<=>23 74@A. BCD, F G B JKL<=>MN., OPQ, ;FKLJMN  R4S, VXY [\ R4. _‘abde Æ# f ibj . " 23 ; 78 ; MN; 4 Recursive solution to unbiased grey model and its optimization SHI Bin1, LIU Si-feng1, DANG Yao-guo1, WANG Zheng-xin2 (1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2. School of Economics and Management, Zhejiang Normal University, Jinhua 321004, China) Abstract As there are some jumping errors from the differential equation to differential equation in traditional grey modeling, this paper proposed recursive solution to unbiased grey model based on the unique expression of such models. It deduced prediction formulas of unbiased grey model under different initial conditions with the recursive method. On this basis, further study of the optimization problem under two criteria has been done. The results show that both the optimal models under the same criteria have the same simulation and prediction values with higher precision than other methods. Finally, the effectiveness and the practicality of the model are proved by a real project. Keywords unbiased grey model; recursive solution; optimization; forecast 1 #$ Æ, , , , %& , ’% , Æ .  20 80  [1]  , “Æ ” , ,  , " #. ’ GM(1,1) , Æ %& , !"  &!&%’ [2] , &()’#%&.  , , ##*$%()* [3]. GM(1,1) Æ*,*, . [4] ’ GM(1,1) ’01,2, * + GM(1,1) , ,’"+0 6%0-$+, "0.,, #-7. GM(1,1) Æ*%2, 2/"%/.  , :".’ GM(1,1) 1 0 + [5−6], 4 GM(1,1) -SSODMM[7] GM(1,1) -SOB[8]SSODW-GM(1,1)[9] GM (1, 1) -WELCP[10]5 [11] "%1( GM (1, 1)  [12−13], ’+0 1,%0-22$2.   364:, 6 ./0: 2009-09-02 34: 957:=; (71071077); 98:5>9 (08AJY024); =?67:5; (200802870020); ;?@? 8=;9:@AB7>:@>9 (NZ2010006) 9;: ; (1973–), >, A, B?;@, 7:@CA, @C
8  ;, : HEDBIÆ?F@H 1533 A0 . H-, .. [11] *5, I + GM (1, 1) 2LB* a, b MJ GM(1,1) 1N . . [1] *0*, GM(1,1) 1N O “”, D# GM(1,1) 1N , O"Æ*$EF"&(. PH, KL  BHS2*:. I2, Æ + GM(1,1) A 0 , * +JMM, $ T +JMK , L, M NN&UT1. 2 <=?@ABCEF O X (0) N1, +P1, k i=1 x(0)(i). *, x(1)(k) = X (0) = {x(0)(1), x(0)(2),··· , x(0)(n)}, X (1) = {x(1)(1), x(1)(2),··· , x(1)(n)}, . [5–6] , )" + GM(1,1) 2T : x(1)(k) = e−ax(1)(k − 1) + b a(1 − e−a), k = 2, 3,··· , n (1) *, −a 4W, b ’. MR β1 = e−a, β2 = b a(1 − e−a), (1) AP: (2) ,   + (U BGM). *RB, ˆβ = (β1, β2)T K % x(1)(k) = β1x(1)(k − 1) + β2, k = 2, 3,··· , n ST6%B. R ˆβ = (β1, β2)T  +X, U +%STB *, ⎡ ⎢⎢⎢⎢⎣ Y = ˆβ = (BTB) ⎤ ⎥⎥⎥⎥⎦ , B = −1BTY ⎡ ⎢⎢⎢⎢⎣ x(1)(1) x(1)(2) 1 1 ... x(1)(n − 1) 1 ... x(0)(2) x(0)(3) ... x(0)(n) (3) ⎤ ⎥⎥⎥⎥⎦ . I XY-HS2, T L JMKM* + K . (U BGM − x(1)(1)) M: GH 1 O BY ˆβ 4%I, ˆβ = (BTB)−1BTY , ( ˆx(1)(1) = x(1)(1), U + ⎧⎨ ⎩ βk−1 x(1)(1) + 1 x(1)(1) + kβ2, (β1 − 1)βk−2 β2, 1 1 − βk−1 1 − β1 1 · β2, x(1)(1) + β2βk−2 1 1) ˆx(1)(k) = 2) ˆx(0)(k) = *, k = 2, 3,··· , n. IJ 1)  (2) * k = 2, 3,· · ·, n, " x(1)(2) = β1x(1)(1) + β2 x(1)(3) = β1x(1)(2) + β2 ... x(1)(n) = β1x(1)(n − 1) + β2 β1 = 1 β1 = 1 β1 = 1 β1 = 1 , (4) (5) (6)
1534 D C U V   E  S 31 L ˆx(1)(j − 1) Z+J ˆx(1)(j), j = 2, 3,··· , k, : ˆx(1)(k) = β1ˆx(1)(k − 1) + β2 = β1[β1ˆx(1)(k − 2) + β2] + β2 ... = βk−1 ˆx(1)(1) + (βk−2 1 + βk−3 1 1 + ··· + β1 + 1)β2 ˆx(1)(k) = βk−1 1 ˆx(1)(1) + 1 − βk−1 1 − β1 1 · β2 W β1 = 1 , W β1 = 1 , (7) (8) (9) (10) (11) (12) (14) (15) ˆx(1)(k) = ˆx(1)(1) + kβ2 ( ˆx(1)(1) = x(1)(1),  ˆx(1)(k) K : 1 − βk−1 1 − β1 ⎧⎨ ⎩ βk−1 2) ’ ˆx(1)(k) ’+TU6: W β1 = 1 , x(1)(1) + 1 x(1)(1) + kβ2, ˆx(1)(k) = 1 · β2, β1 = 1, β1 = 1, k = 2, 3,··· , n ˆx(0)(k) = ˆx(1)(k) − ˆx(1)(k − 1) ˆx(1)(1) − βk−2 1 ˆx(1)(1) + 1 = βk−1 = (β1 − 1)βk−2 = (β1 − 1)βk−2 1 1 β2 ˆx(1)(1) + 1 − β1 ˆx(1)(1) + β2βk−2 1 · β2 − 1 − βk−2 1 − β1 1 · β2 1 1 − βk−1 1 − β1 · (βk−2 1 − βk−1 1 ) W β1 = 1 , ˆx(0)(k) = ˆx(1)(k) − ˆx(1)(k − 1) = β2 ( ˆx(1)(1) = x(1)(1),  +K : x(1)(1) + β2βk−2 , ˆx(0)(k) = (13) GH 2 O BY ˆβ 4%I, ˆβ = (BTB)−1BTY , : “ L6”, ( ˆx(1)(n) = 1 β1 = 1, β1 = 1, k = 2, 3,· · ·, n (β1 − 1)βk−2 β2, 1 x(1)(n), U + (U BGM − x(1)(n)) M: 1) ˆx(1)(k) = 1 x(1)(n) + ⎧⎨ ⎩ βk−n x(1)(n) + (k − n)β2, (β1 − 1)βk−n−1 β2, 1 1 − βk−n 1 − β1 1 · β2, β1 = 1 β1 = 1 x(1)(n) + β2βk−n−1 1 , β1 = 1 β1 = 1 2) ˆx(0)(k) = *, k = 2, 3,··· , n. IJ X 1 , . #NY*JMVA0 W*, +K ZX β1, β2 -( x(1)(1)x(1)(n), [\$ (LKN%0. L, ZT’I %1. 3 <=?@ABL RIN U BGM − x(1)(1)U BGM − x(1)(n) ( ˆx(1)(1) = c1, ˆx(1)(n) = cn.  YTN&U R c1, cn.
8  ;, : HEDBIÆ?F@H 1535 O[ c1, cn, 61,ZP]1,0(2Z-%ST#^T%,  &UT, : n ⎧⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ c1 = k=2 n k−1 1 1−β1 β2(k−1) [x(1)(k)− 1−β n k=2 x(1)(k) n−1 + ( n 1 k=2 n t=2 min c S2 1 = ·β2]βk−1 1 , β1 = 1, [x(1)(t) − ˆx(1)(t)]2 (16) n k=2 ⎧⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ cn = k−n 1 n [x(1)(k)− 1−β n 1−β1 β2(k−n) k=2 x(1)(k) n−1 + ( n 1 k=2 ·β2]βk−n 1 , β1 = 1, 2 + 1)β2, β1 = 1, 2 + 1)β2, β1 = 1. , ,JMK  ˆx(0)(k)|c1 ˆx(0)(k)|cn, U ˆx(0)(k)|c1 = ˆx(0)(k)|cn. [. GH 3 &UT, O U BGM − x(1)(1)U BGM − x(1)(n) (  ˆx(1)(1) = c1, ˆx(1)(n) = cn IJ W β1 = 1 , ˆx(0)(k)|c1 = ˆx(0)(k)|cn PH]. W β1 = 1 , ˆx(0)(k)|c1 = (β1 − 1)βk−2 n 1 · β2] · βk−1 1 + β2 · βk−2 1 x(1)(k) · βk−1 (1 − βk−1 1 ) · βk−1 1 + β2 n k=2 β2(k−1) 1 (β1 − 1) = = = (β1 − 1) (β1 − 1) k=2 n k=2 n k=2 n k=2 1 1 k=2 n [x(1)(k) − 1−βk−1 1−β1 β2(k−1) n n β2(k−1) n 1 + β2 k=2 k=2 1 1 + β2 βk−1 1 x(1)(k) · βk−1 n β2(k−1) 1 k=2 x(1)(k) · βk n n β2k 1 k=2 1 + β2 k=2 n k=2 βk 1 · βk−2 1 · βk−1 1 , · β2] · βk−n 1 1 1 k=2 n [x(1)(k) − 1−βk−n 1−β1 β2(k−n) n (1 − βk−n n β2(k−n) n 1 + β2 k=2 k=2 1 1 1 + β2 βk−n 1 · βk−n−1 1 x(1)(k) · βk−n n β2(k−n) 1 k=2 x(1)(k) · βk n β2k 1 1 + β2 k=2 n k=2 βk 1 · βk−1 1 , x(1)(k) · βk−n n k=2 n k=2 n k=2 (β1 − 1) (β1 − 1) (β1 − 1) = = = ˆx(0)(k)|cn = (β1 − 1)βk−n−1 1 k=2 1 + β2 · βk−n−1 n ) · βk−n 1 + β2 β2(k−n) 1 k=2 · βk−n−1 1 % ˆx(0)(k)|c1 = ˆx(0)(k)|cn. k=2 O[ c1, cn, 61,0(2Z-%ST#^T%,  [x(0)(t) − ˆx(0)(t)]2 (17) n t=2 min c S2 0 =
1536 D C U V   E  S 31 n &UT, : n c1 = k=2 (β1 − 1)2β2(k−2) 1 k=2 n ; cn = k=2 [x(0)(k) − β2βk−2 1 ](β1 − 1)βk−2 1 [x(0)(k) − β2βk−n−1 1 ](β1 − 1)βk−n−1 1 n k=2 (β1 − 1)2β2(k−n−1) 1 . [. GH 4 &UT, O U BGM − x(1)(1)U BGM − x(1)(n) (  ˆx(1)(1) = c1, ˆx(1)(n) = cn , ,JMK  ˆx(0)(k)|c1 ˆx(0)(k)|cn, U ˆx(0)(k)|c1 = ˆx(0)(k)|cn. IJ n k=2 [x(0)(k) − β2βk−2 n k=2 1 1 ] · (β1 − 1) · βk−2 (β1 − 1)2 · β2(k−2) n x(0)(k) · βk n · βk−2 1 = k=2 1 1 x(0)(k) · βk−2 1 + β2 · βk−2 1 · βk 1 , β2k 1 k=2 ˆx(0)(k)|c1 = (β1 − 1)βk−2 n 1 (β1 − 1)2 n = k=2 (β1 − 1)2 · β2(k−2) 1 k=2 n k=2 ˆx(0)(k)|cn = (β1 − 1)βk−n−1 n 1 (β1 − 1)2 n % ˆx(0)(k)|c1 = ˆx(0)(k)|cn. k=2 = x(0)(k) · βk−n−1 1 k=2 (β1 − 1)2 · β2(k−n−1) 1 [x(0)(k) − β2βk−n−1 n k=2 1 1 ] · (β1 − 1) · βk−n−1 (β1 − 1)2 · β2(k−2) n x(0)(k) · βk n · βk−n−1 k=2 = 1 1 1 · βk 1 , β2k 1 k=2 + β2 · βk−n−1 1 4 PQS  ‘, [NÆ\1, _ +1N M ’‘, T  . [13]  ‘]][JMM^. ^_ 1997–2004 a_aJaA 1. ’ 1997–2002 a_aJ U BGM − x(1)(1)U BGM − x(1)(n), ,N&UT1, *, ’ 2003 - 2004 a_ aJ%, b%‘‘]. T 1 1997–2004 UVXYZ[^ (_‘) 1997 d:bc 8.21 17.89 10.51 12.72 14.84  2002 1998 1999 2000 2001 9.52 2003 2004 21.22 26.79  1997–2002 a_aJ* U BGM − x(1)(1) , JMK * U BGM − x(1)(n) , JMK &U1 U BGM − x(1)(1) , JMK &U1 U BGM − x(1)(n) , JMK &U1 U BGM − x(1)(1) , JMK ˆx(0)(k) = 9.1619 × 1.1791k−2; ˆx(0)(k) = 20.8828 × 1.1791k−7; ˆx(0)(k) = 9.1679 × 1.1791k−2; ˆx(0)(k) = 20.8853 × 1.1791k−7; ˆx(0)(k) = 9.1682 × 1.1791k−2;
8  ;, : HEDBIÆ?F@H 1537 &U1 U BGM − x(1)(n) , JMK ˆx(0)(k) = 20.8858 × 1.1791k−7.  3 4 , c &U () TN10(c, dL, e JMK , \0(, aA 2. T 2 cdecfghjemn (_‘) ofHÆ U BGM − x(1)(n) U BGM − x(1)(1) ofHÆ ÆdIe ÆdIe ÆdIe ÆdIe 9.1619 10.8019 12.7355 15.0151 17.7028 20.8716 24.6076 9.1669 10.8077 12.7423 15.0232 17.7123 20.8828 24.6207 9.1679 10.8090 12.7438 15.0249 17.7144 20.8853 24.6237 9.1682 10.8091 12.7442 15.0254 17.7149 20.8858 24.6244  de 1998 1999 2000 2001 2002 2003 2004 9.52 10.51 12.72 14.84 17.89 21.22 26.79 *, 1998–2002 0(, 20032004 (. Me\022,  aA 3 -A 4. Æj fefkÆ (gh) feikÆ (%) *, Zgh’2 = 1 5 T 3 cdpYZ[^ecfqr U BGM − x(1)(1) U BGM − x(1)(n) ofHÆ ofHÆ ÆdIe ÆdIe ÆdIe ÆdIe 0.2056 0.2068 1.79 6 1.78 ˆx(0)(i) − x(0)(i) ; Zgc’2 = 1 i=2 0.2071 1.79 6 |ˆx(0)(i)−x(0)(i)| . 5 i=2 x(0)(i) 0.2071 1.79 T 4 cdpYZ[^eghspqr (%)  U BGM − x(1)(1) U BGM − x(1)(n) ofHÆ ofHÆ 2003 2004 1.6418 8.1462 1.5889 8.0968 1.5775 8.0862 1.5748 8.0837 A 3 - 4 W, \ +2 ]Æ0, 02!K, j ,Æ*)7. GM(1,1) "0+. . [13] , ÆJMM + 0j[P GM(1,1) , b0Mj . [13]  1. j6d, JMMI GM(1,1) * XY. 5 uv Æ JMMNÆ +-\1, ’$ 1A[, &UTN10(c. I* XYH S2, 0‘ GM(1,1) - +1N M"%h. H-, +JMM%K iH0 , [jJMMiHO2 , -’]U]+. dL, #Yk], UkjM" -nl, o$%4Wkh. wxz [1] mn. DIEDo [M]. mA: p:8=rs8, 2002. Deng J L. Grey Prediction and Decision Making[M]. Wuhan: Huazhong University of Science and Technology Press, 2002. [2] ql, un,
1538 D C U V   E  S 31 [3] of, mn, . Do;x [M]. w: :=rs8, 2005. Xiao X P, Song Z M, Li F. The Basis of Grey Technology and Its Applicatipn[M]. Beijing: Science Press, 2005. [4] spq, tr, ur. HEDBIÆ [J]. DCUVEy{o, 2000(6): 6–8. Ji P R, Huang W S, Hu X Y. Nunbiased grey forecasting model[J]. Systems Engineering and Electronics, 2000(6): 6–8. [5] s. HEDB GM(1,1) Æ vwÆ@ [J]. DCUVEy{o, 2003, 25(9): 1094–1097. Mu Y. A direct modeling method of unbiased GM(1,1)[J]. Systems Engineering and Electronics, 2003, 25(9): 1094–1097. [6] t, un, ql. HE GM(1,1) Æx|vw [J]. DCUVES, 2007, 27(11): 153–158. Wang Z X, Dang Y G, Liu S F. Analysis of chaotic characteristics of unbiased gray models[J]. Systems Engineering — Theory & Practice, 2007, 27(11): 153–158. [7] txv, q, qz . GM1,1Æz|H vwÆ@ [J]. DCUVES, 2000, 20(9): 99–104. Wang Y N, Liu G Z, Liu K D. A step by step optimum modeling method of GM(1,1)[J]. Systems Engineering — Theory & Practice, 2000, 20(9): 99–104. [8] txv. GM(1,1) |H vwÆ<@F [J]. DCUVES, 2003, 23(2): 120–124. Wang Y N. An extended step by step optimum direct modeling method of GM(1,1)[J]. Systems Engineering — Theory & Practice, 2003, 23(2): 120–124. [9] txv, w, t9{, . z|HDy He GM(1,1) wÆ<@ [J]. DCUVES, 2002, 22(9): 128–131. Wang Y N, Li W Q, Wang B Y, et al. The modeling method of GM(1,1) with a step by step optimum grey derivative’s whiting values[J]. Systems Engineering — Theory & Practice, 2002, 22(9): 128–131. [10] s. HDy He GM(1,1) Æ [J]. y=SEz, 2003, 33(3): 13–16. Mu Y. An unbiased GM(1,1) model with optimum derivative’s whitening values[J]. Mathematics in Practice and Theory, 2003, 33(3): 13–16. [11] |}, ql. ~ GM(1,1) ÆEDBIÆwÆ} [J]. DCUVES, 2005, 25(1): 93–98. Xie N M, Liu S F. Discrete GM(1,1) and mechanism of grey forecasting model[J]. Systems Engineering — Theory & Practice, 2005, 25(1): 93–98. [12] Bo L, Yong W. Optimized GM(1,1) grey model based on connotation expression[J]. Journal of Grey System, 2007(3): 133–136. [13] t, un, ql. ;}~~y~yH GM(1,1) Æ [J]. DCUVES, 2008, 28(2): 61–67. Wang Z X, Dang Y G, Liu S F. An optimal GM(1,1) based on the discrete function with exponential law[J]. Systems Engineering — Theory & Practice, 2008, 28(2): 61–67.
分享到:
收藏