logo资料库

Markov Processes for Stochastic Modeling.pdf

第1页 / 共505页
第2页 / 共505页
第3页 / 共505页
第4页 / 共505页
第5页 / 共505页
第6页 / 共505页
第7页 / 共505页
第8页 / 共505页
资料共505页,剩余部分请下载后查看
Markov Processes for Stochastic Modeling
Copyright Page
Contents
Preface
Chapter 1. Basic Concepts
1.1 Review of Probability
1.1.1 Conditional Probability
1.1.2 Independence
1.1.3 Total Probability and the Bayes’ Theorem
1.2 Random Variables
1.2.1 Distribution Functions
1.2.2 Discrete Random Variables
1.2.3 Continuous Random Variables
1.2.4 Expectations
1.2.5 Expectation of Nonnegative Random Variables
1.2.6 Moments of Random Variables and the Variance
1.3 Transform Methods
1.3.1 The s-Transform
1.3.2 The z-Transform
1.4 Bivariate Random Variables
1.4.1 Discrete Bivariate Random Variables
1.4.2 Continuous Bivariate Random Variables
1.4.3 Covariance and Correlation Coefficient
1.5 Many Random Variables
1.6 Fubini’s Theorem
1.7 Sums of Independent Random Variables
1.8 Some Probability Distributions
1.8.1 The Bernoulli Distribution
1.8.2 The Binomial Distribution
1.8.3 The Geometric Distribution
1.8.4 The Pascal Distribution
1.8.5 The Poisson Distribution
1.8.6 The Exponential Distribution
1.8.7 The Erlang Distribution
1.8.8 Normal Distribution
1.9 Introduction to Stochastic Processes
1.10 Classification of Stochastic Processes
1.11 Characterizing a Stochastic Process
1.11.1 Mean and Autocorrelation Function of a Stochastic Process
1.12 Stationary Stochastic Processes
1.12.1 Strict-Sense Stationary Processes
1.12.2 Wide-Sense Stationary Processes
1.13 Ergodic Stochastic Processes
1.14 Some Models of Stochastic Processes
1.14.1 Martingales
1.14.2 Counting Processes
1.14.3 Independent Increment Processes
1.14.4 Stationary Increment Process
1.14.5 Poisson Processes
1.15 Problems
Chapter 2. Introduction to Markov Processes
2.1 Introduction
2.2 Structure of Markov Processes
2.3 Strong Markov Property
2.4 Applications of Discrete-Time Markov Processes
2.4.1 Branching Processes
2.4.2 Social Mobility
2.4.3 Markov Decision Processes
2.5 Applications of Continuous-Time Markov Processes
2.5.1 Queueing Systems
2.5.2 Continuous-Time Markov Decision Processes
2.5.3 Stochastic Storage Systems
2.6 Applications of Continuous-State Markov Processes
2.6.1 Application of Diffusion Processes to Financial Options
2.6.2 Applications of Brownian Motion
Chapter 3. Discrete-Time Markov Chains
3.1 Introduction
3.2 State Transition Probability Matrix
3.2.1 The n-Step State Transition Probability
3.3 State Transition Diagrams
3.4 Classification of States
3.5 Limiting-State Probabilities
3.5.1 Doubly Stochastic Matrix
3.6 Sojourn Time
3.7 Transient Analysis of Discrete-Time Markov Chains
3.8 First Passage and Recurrence Times
3.9 Occupancy Times
3.10 Absorbing Markov Chains and the Fundamental Matrix
3.10.1 Time to Absorption
3.10.2 Absorption Probabilities
3.11 Reversible Markov Chains
3.12 Problems
Chapter 4. Continuous-Time Markov Chains
4.1 Introduction
4.2 Transient Analysis
4.3 Birth and Death Processes
4.3.1 Local Balance Equations
4.3.2 Transient Analysis of Birth and Death Processes
4.4 First Passage Time
4.5 The Uniformization Method
4.6 Reversible Continuous-Time Markov Chains
4.7 Problems
Chapter 5. Markovian Queueing Systems
5.1 Introduction
5.2 Description of a Queueing System
5.3 The Kendall Notation
5.4 The Little’s Formula
5.5 The PASTA Property
5.6 The M/M/1 Queueing System
5.6.1 Stochastic Balance
5.6.2 Total Time and Waiting Time Distributions of the M/M/1 Queueing System
5.7 Examples of Other M/M Queueing Systems
5.7.1 The M/M/c Queue: The c-Server System
5.7.2 The M/M/1/K Queue: The Single-Server Finite-Capacity System
5.7.3 The M/M/c/c Queue: The c-Server Loss System
5.7.4 The M/M/1//K Queue: The Single-Server Finite-Customer Population System
5.8 M/G/1 Queue
5.8.1 Waiting Time Distribution of the M/G/1 Queue
5.8.2 The M/Ek/1 Queue
5.8.3 The M/D/1 Queue
5.8.4 The M/M/1 Queue Revisited
5.8.5 The M/HK/1 Queue
5.9 G/M/1 Queue
5.9.1 The Ek/M/1 Queue
5.9.2 The D/M/1 Queue
5.9.3 The H2/ M/1 Queue
5.10 Applications of Markovian Queues
5.11 Problems
Chapter 6. Markov Renewal Processes
6.1 Introduction
6.2 The Renewal Equation
6.2.1 Alternative Approach
6.3 The Elementary Renewal Theorem
6.4 Random Incidence and Residual Time
6.5 Markov Renewal Process
6.5.1 The Markov Renewal Function
6.6 Semi-Markov Processes
6.6.1 Discrete-Time Semi-Markov Processes
6.6.2 Continuous-Time Semi-Markov Processes
6.7 Markov Jump Processes
6.7.1 The Homogeneous Markov Jump Process
6.8 Problems
Chapter 7. Markovian Arrival Processes
7.1 Introduction
7.2 Overview of Matrix-Analytic Methods
7.3 Markovian Arrival Process
7.3.1 Properties of MAP
7.4 Batch Markovian Arrival Process
7.4.1 Properties of BMAP
7.5 Markov-Modulated Poisson Process
7.5.1 The Interrupted Poisson Process
7.5.2 The Switched Poisson Process
7.5.3 Properties of MMPP
7.5.4 The MMPP(2)/M/1 Queue
7.6 Markov-Modulated Bernoulli Process
7.6.1 The MMBP(2)
7.7 Sample Applications of MAP and Its Derivatives
7.8 Problems
Chapter 8. Random Walk
8.1 Introduction
8.2 The Two-Dimensional Random Walk
8.3 Random Walk as a Markov Chain
8.4 Symmetric Random Walk as a Martingale
8.5 Random Walk with Barriers
8.6 Gambler’s Ruin
8.6.1 Ruin Probability
8.6.2 Duration of a Game
8.7 First Return Times
8.8 First Passage Times
8.9 Maximum of a Random Walk
8.10 Random Walk on a Graph
8.10.1 Random Walk on a Weighted Graph
8.11 Markov Random Walk
8.11.1 Markov Random Walk in Semisupervised Machine Learning
8.12 Random Walk with Correlation
8.13 Continuous-Time Random Walk
8.13.1 The Master Equation
8.14 Sample Applications of Random Walk
8.14.1 The Ballot Problem
8.14.2 Web Search
8.14.3 Mobility Models in Mobile Networks
8.14.4 Insurance Risk
8.14.5 Content of a Dam
8.14.6 Cash Management
8.15 Problems
Chapter 9. Brownian Motion and Diffusion Processes
9.1 Introduction
9.2 Brownian Motion
9.2.1 Brownian Motion with Drift
9.2.2 Brownian Motion as a Markov Process
9.2.3 Brownian Motion as a Martingale
9.2.4 First Passage Time of a Brownian Motion
9.2.5 Maximum of a Brownian Motion
9.2.6 First Passage Time in an Interval
9.2.7 The Brownian Bridge
9.3 Introduction to Stochastic Calculus
9.3.1 The Ito Integral
9.3.2 The Stochastic Differential
9.3.3 The Ito’s Formula
9.3.4 Stochastic Differential Equations
9.4 Geometric Brownian Motion
9.5 Fractional Brownian Motion
9.6 Application of Brownian Motion to Option Pricing
9.7 Random Walk Approximation of Brownian Motion
9.8 The Ornstein-Uhlenbeck Process
9.8.1 Mean Reverting Ornstein-Uhlenbeck Process
9.8.2 Applications of the Ornstein-Uhlenbeck Process
9.9 Diffusion Processes
9.10 Examples of Diffusion Processes
9.10.1 Brownian Motion
9.10.2 Brownian Motion with Drift
9.10.3 Levy Processes
9.11 Relationship Between the Diffusion Process and Random Walk
9.12 Problems
Chapter 10. Controlled Markov Processes
10.1 Introduction
10.2 Markov Decision Processes
10.2.1 Overview of Dynamic Programming
10.2.2 Markov Reward Processes
10.2.3 MDP Basics
10.2.4 MDPs with Discounting
10.2.5 Solution Methods
10.3 Semi-Markov Decision Processes
10.3.1 Semi-Markov Reward Model
10.3.2 Discounted Reward
10.3.3 Analysis of the Continuous-Decision-Interval SMDPs
10.3.4 Solution by Policy-Iteration
10.3.5 SMDP with Discounting
10.3.6 Solution by Policy Iteration when Discounting Is Used
10.3.7 Analysis of the Discrete-Decision-Interval SMDPs with Discounting
10.3.8 Continuous-Time Markov Decision Processes
10.3.9 Applications of Semi-Markov Decision Processes
10.4 Partially Observable Markov Decision Processes
10.4.1 Partially Observable Markov Processes
10.4.2 POMDP Basics
10.4.3 Solving POMDPs
10.4.4 Computing the Optimal Policy
10.4.5 Approximate Solutions of POMDP
10.5 Problems
Chapter 11. Hidden Markov Models
11.1 Introduction
11.2 HMM Basics
11.3 HMM Assumptions
11.4 Three Fundamental Problems
11.5 Solution Methods
11.5.1 The Evaluation Problem
11.5.2 The Decoding Problem and the Viterbi Algorithm
11.5.3 The Learning Problem and the Baum-Welch Algorithm
11.6 Types of Hidden Markov Models
11.7 Hidden Markov Models with Silent States
11.8 Extensions of Hidden Markov Models
11.8.1 Hierarchical Hidden Markov Model
11.8.2 Factorial Hidden Markov Model
11.8.3 Coupled Hidden Markov Model
11.8.4 Hidden Semi-Markov Models
11.8.5 Profile HMMs for Biological Sequence Analysis
11.9 Other Extensions of HMM
11.10 Problems
Chapter 12. Markov Random Fields
12.1 Introduction
12.2 Markov Random Fields
12.2.1 Graphical Representation
12.2.2 Gibbs Random Fields and the Hammersley-Clifford Theorem
12.3 Examples of Markov Random Fields
12.3.1 The Ising Model
12.3.2 The Potts Model
12.3.3 Gauss-Markov Random Fields
12.4 Hidden Markov Random Fields
12.5 Applications of Markov Random Fields
12.6 Problems
Chapter 13. Markov Point Processes
13.1 Introduction
13.2 Temporal Point Processes
13.2.1 Specific Temporal Point Processes
13.3 Spatial Point Processes
13.3.1 Specific Spatial Point Processes
13.4 Spatial-Temporal Point Processes
13.5 Operations on Point Processes
13.5.1 Thinning
13.5.2 Superposition
13.5.3 Clustering
13.6 Marked Point Processes
13.7 Markov Point Processes
13.8 Markov Marked Point Processes
13.9 Applications of Markov Point Processes
13.10 Problems
Chapter 14. Markov Chain Monte Carlo
14.1 Introduction
14.2 Monte Carlo Simulation Basics
14.2.1 Generating Random Variables from the Random Numbers
14.2.2 Monte Carlo Integration
14.3 Markov Chains Revisited
14.4 MCMC Simulation
14.4.1 The Metropolis-Hastings Algorithm
14.4.2 Gibbs Sampling
14.5 Applications of MCMC
14.5.1 Simulated Annealing
14.5.2 Inference in Belief Networks
14.6 Choice of Method
14.7 Problems
References
Index
Markov Processes for Stochastic Modeling
ELSEVIERscience & technology books Companion Web Site: http://www.elsevierdirect.com/companions/9780123744517 Markov Processes for Stochastic Modeling, by Oliver C. Ibe Resources for Professors: • Links to web sites carefully chosen to supplement the content of the textbook • Also available with purchase of Markov Processes for Stochastic Modeling, password protected and activated upon registration, online Instructors Solutions Manual • Online Student Solutions Manual is now available through separate purchase. TOOLS ALL FOR TEACHING YOUR textbooks.elsevier.com NEEDS ACADEMIC PRESS To adopt this book for course use, visit http://textbooks.elsevier.com
Markov Processes for Stochastic Modeling Oliver C. Ibe University of Massachusetts Lowell, Massachusetts AMSTERDAM • BOSTON • HEIDELBERG • LONDON SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO NEW YORK • OXFORD • PARIS • SAN DIEGO Academic Press is an imprint of Elsevier
Elsevier Academic Press 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK This book is printed on acid-free paper. ∞ Copyright © 2009, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining Permissions.” Library of Congress Cataloging-in-Publication Data Ibe, Oliver C. (Oliver Chukwudi), 1947- Markov process for stochastic modeling/Oliver C. Ibe. p.cm. ISBN 978-0-12-374451-7 (hardcover:alk. paper) 1. Markov processes. 2. Stochastic processes. I. Title. II. Series: Stochastic modeling. QA274.7.I24 2009 519.2’33–dc22 2008021501 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 13: 978-0-12-3744451-7 For all information on all Elsevier Academic Press publications visit our Web site at www.elsevierdirect.com Printed in the United States of America 08 09 10 9 8 7 6 5 4 3 2 1
Contents Preface xiii Acknowledgments xiv 1. Basic Concepts 1 1.1. Review of Probability 1 1.1.1. Conditional Probability 4 1.1.2. Independence 4 1.1.3. Total Probability and the Bayes’ Theorem 5 1.2. Random Variables 6 1.2.1. Distribution Functions 6 1.2.2. Discrete Random Variables 6 1.2.3. Continuous Random Variables 7 1.2.4. Expectations 8 1.2.5. Expectation of Nonnegative Random Variables 8 1.2.6. Moments of Random Variables and the Variance 8 1.3. Transform Methods 9 1.3.1. The s-Transform 9 1.3.2. The z-Transform 10 1.4. Bivariate Random Variables 12 1.4.1. Discrete Bivariate Random Variables 13 1.4.2. Continuous Bivariate Random Variables 13 1.4.3. Covariance and Correlation Coefficient 14 1.5. Many Random Variables 14 1.6. Fubini’s Theorem 15 1.7. Sums of Independent Random Variables 16 1.8. Some Probability Distributions 18 1.8.1. The Bernoulli Distribution 18 1.8.2. The Binomial Distribution 19 1.8.3. The Geometric Distribution 20 1.8.4. The Pascal Distribution 20 1.8.5. The Poisson Distribution 21 1.8.6. The Exponential Distribution 21 1.8.7. The Erlang Distribution 22 1.8.8. Normal Distribution 23 Introduction to Stochastic Processes 24 1.9. v
vi Contents 1.10. Classification of Stochastic Processes 25 1.11. Characterizing a Stochastic Process 25 1.11.1. Mean and Autocorrelation Function of a Stochastic Process 26 1.12. Stationary Stochastic Processes 27 1.12.1. Strict-Sense Stationary Processes 27 1.12.2. Wide-Sense Stationary Processes 28 1.13. Ergodic Stochastic Processes 28 1.14. Some Models of Stochastic Processes 29 1.14.1. Martingales 29 1.14.2. Counting Processes 32 1.14.3. Independent Increment Processes 32 1.14.4. Stationary Increment Process 33 1.14.5. Poisson Processes 33 1.15. Problems 38 Introduction to Markov Processes 45 Introduction 45 2. 2.1. 2.2. Structure of Markov Processes 46 2.3. Strong Markov Property 48 2.4. Applications of Discrete-Time Markov Processes 49 2.4.1. Branching Processes 49 2.4.2. Social Mobility 50 2.4.3. Markov Decision Processes 50 2.5. Applications of Continuous-Time Markov Processes 50 2.5.1. Queueing Systems 50 2.5.2. Continuous-Time Markov Decision Processes 51 2.5.3. Stochastic Storage Systems 51 2.6. Applications of Continuous-State Markov Processes 52 2.6.1. Application of Diffusion Processes to Financial Options 52 2.6.2. Applications of Brownian Motion 52 3. Discrete-Time Markov Chains 55 3.1. 3.2. State Transition Probability Matrix 56 Introduction 55 3.2.1. The n-Step State Transition Probability 56 3.3. State Transition Diagrams 58 3.4. Classification of States 59 3.5. Limiting-State Probabilities 61 3.5.1. Doubly Stochastic Matrix 65
Contents vii 3.6. Sojourn Time 66 3.7. Transient Analysis of Discrete-Time Markov Chains 67 3.8. First Passage and Recurrence Times 69 3.9. Occupancy Times 72 3.10. Absorbing Markov Chains and the Fundamental Matrix 73 3.10.1. Time to Absorption 74 3.10.2. Absorption Probabilities 77 3.11. Reversible Markov Chains 78 3.12. Problems 79 4. Continuous-Time Markov Chains 83 4.1. 4.2. Transient Analysis 86 4.3. Birth and Death Processes 90 Introduction 83 4.3.1. Local Balance Equations 94 4.3.2. Transient Analysis of Birth and Death Processes 95 4.4. First Passage Time 96 4.5. The Uniformization Method 98 4.6. Reversible Continuous-Time Markov Chains 99 4.7. Problems 99 Introduction 105 5. Markovian Queueing Systems 105 5.1. 5.2. Description of a Queueing System 105 5.3. The Kendall Notation 108 5.4. The Little’s Formula 109 5.5. The PASTA Property 110 5.6. The M/M/1 Queueing System 110 5.6.1. Stochastic Balance 114 5.6.2. Total Time and Waiting Time Distributions of the M/M/1 Queueing System 114 5.7. Examples of Other M/M Queueing Systems 117 5.7.1. The M/M/c Queue: The c-Server System 118 5.7.2. The M/M/1/K Queue: The Single-Server Finite-Capacity System 121 5.7.3. The M/M/c/c Queue: The c-Server Loss System 126 5.7.4. The M/M/1//K Queue: The Single-Server Finite-Customer Population System 128 5.8. M/G/1 Queue 130 5.8.1. Waiting Time Distribution of the M/G/1 Queue 132
分享到:
收藏