2 
, :  
339
*!, $ “BJ!” /)’!. !G Solow !, 7I40	,
 	JD1#B-.
Cass[3]  Koopmans[4]  Ramsey[5] , ("#"KÆ,, ’1 ($K*1,
 Solow !#(-0, !G RCK ! Ramsey !. ("#"KÆ,K,  
Samuelson[6] 8 % !K9Æ,, 	! (saddle) 10<=,  !)’L
4M)’.  Ramsey ! L8 Solow !I4,   	-JD1#B
-.
0-B-0, M%">. Arrow[7] C	 (learning by
doing) !, 0	B  M , 8*!8 Æ,, B%
AK !8. Uzawa[8] )*M! ?N!, !   
M . Romer[9,10]  Lucas[11,12] ??/ !!-, $0	I
#,  ),N%JB, K$0	! , 	,
?.9 Arrow-Romer !  Uzawa-Lucas !.
2.2  !"#  !r1
Ramsey !Æ’"#"’1$",  C’1$8,  (infinite horizon), B(%
93 16, 932P%Æ,. Samuelson[13]  Diamond[14]
8"#"’1$8, Æ,,  (, 0	"#"’1$3, ?$, ?#Q
, (K’1,  ?=1)C)* OLG !. 0#
%: O5. %?$ OLG ’(%, L. 
39?/8L, &/I	,  ÆP9QQ/%’1<=. >P,
M%	, B,%%R:0QQ ,  Æ 
!(R%, ,%  OLG &-, Æ,
, )-. #, OLG !, * ".
< [15]  0 $0 , S-S,  <-5TB, $0 5T
,  16(T6:+M. =Q [16] C  8%U7
10<=, S- !R, "#"’1$LV B, ))*’
1(1B.  [17]  0!(, "=0, %, S-
"WNVR, "WN";(", 5T$J
%/%. ? [18] %%"!"$. %,
TX $&,8"%, 3933/48, #:$ 
 , )8. XY [19] =) 75 $!"/$!, %1	Z	. 
:D4(EL,  1∼2  9V1-[W. )
"(T: 1,, SW:#; Z	,,   
X	Z	B, 725Z	 . A9 [20] =)/\0	-!"/$
!, %	-,  5,.
 *!5, C:	-, -W.  05, 
C:	-(Y7! B , # .
3 %&’) 
3.1 ;+-
RCK K%	, @,K6, -, /0 , %3, 2K "#"
K, P/K]’8; ?$ OLG !WZI, %, 
?,  /%	, /%’<, $, Q, Q
, C!"
340
        
 38 
’1, % $C!", C!! , "4/$.
 2% Futagami  Nakajima[21] @?:,/$0 98>*/%’1(,
’,  /%0 , m, %  t Q,  0   m /%, 0 #Q/%^	, m #Q/%
 9 <.  &!, %R N, 5,    0   m 8 C,
[-\ N/m. /%, d, /%  0   d 8C!", 6"S,
%’1(,   d   m 8, ’10X(! N7	. $	Æ C
, %"3 L = dN/m, 3 O = (m − d)N/m. S-8	E, %,
/%	/% <, 	 <, ]’=*)’.
/!	Æ5 (1) @Q*+ :
(1)
B(x, t) #QQ x 	/%  t Q/!, C(x, t) #QQ x 	/%  t Q’13, r(t)
#Q t Q	-, W (x, t) #Q t Q4!. /%#F, 4!J:
˙B(x, t) = W (x, t) + r(t)B(x, t) − C(x, t)
W (x, t) =
W (t), x ≤ t ≤ x + d
0,
x + d < t ≤ x + m
/%	-,/!, P,G>, J5 (3):
B(x, x) = B(x, x + m) = 0
’P[,"/! b(x, t) = B(x, t)/A(t), /!*+  I	V.5:
˙b(x, t) + b(x, t)g = ω(x, t) + r(t)b(x, t) − c(x, t)
, P[,"/!	Æ5 (5)∼(7) ?:*+ :
˙b(x, t) = ω(x, t) + (r(t) − g)b(x, t) − c(x, t)
ω(x, t) =
ω(t), x ≤ t ≤ x + d
0,
x + d < t ≤ x + m
b(x, x) = b(x, x + m) = 0
/%\%82% CRRA !, -%.5:
u(C(x, t)) = C(x, t)(1−θ)
1 − θ
, θ > 0
θ #Q_]6, θ JK, ’1W@(D4%BJ], /%JLR^’1>$8
. Q x 	/%	%:
 C(x, t) = A(t)c(x, t), A(t) = A(0)egt  :
x+m
e
x
−ρ(t−x) C(x, t)(1−θ)
1 − θ
Q x 	/%#F, A(0)1−θeρx R, */:
max
x+m
e
x
−ρ(t−x) C(x, t)(1−θ)
dt
1 − θ
x+m
e
x
dt = A(0)1−θeρx
−(ρ−g(1−θ))t c(x, t)(1−θ)
1 − θ
dt
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
s.t.
x+m
−(ρ−g(1−θ))t c(x, t)(1−θ)
x
e
max
˙b(x, t) = ω(x, t) + (r(t) − g)b(x, t) − c(x, t)
ω(x, t) =
1 − θ
ω(t), x ≤ t ≤ x + d
0,
x + d < t ≤ x + m
dt
b(x, x) = b(x, x + m) = 0
’ Hamilton 8 H = e−(ρ−g(1−θ))t c(x,t)(1−θ)
1−θ + λ[ω(x, t) + (r(t) − g)b(x, t) − c(x, t)],  :
= r(t) − ρ − θg
˙c(x, t)
c(x, t)
θ
$ :
c(x, t) = c(x, x)eP (x,t)
Æ, f
7<,   lim
k→0
(k) > 0, f
(k) = ∞,
f
(k) = 0.
lim
k→∞ f
	-! D4	,  :
P[,"! #Q:
3.3 /	0C
%	%’1!, :
r(t) = f
(k(t))
ω(t) = f(k(t)) − k(t)f
(k(t))
(19)
(20)
341
(14)
(15)
(16)
(17)
(22)
(23)
∗
(24)
(25)
, :  
 2 
7, P (x, v) =
θ
v
x
r(t)−ρ−θg
dt. #, ’ R(x, v) =
x (r(t) − g)dt.
5 (5) ?DW e−R(x,t)  Q x B  x + m  :
−R(x,v)dv −
$ b(x, x) = b(x, x + m) = 0, c(x, t) = c(x, x)eP (x,t), :
−R(x,v)|x+m
b(x, v)e
ω(v)e
x+d
=
x
x
x
v
x+m
c(x, v)e
−R(x,v)dv
0 =
ω(v)e
x+d
x
−R(x,v)dv −
x+d
x
x+m
x
c(x, x) =
x+m
c(x, x)eP (x,v)−R(x,v)dv
x
ω(v)e−R(x,v)dv
eP (x,v)−R(x,v)dv
c(x, t) =
x+d
x
x+m
x
ω(v)e−R(x,v)dv
eP (x,v)−R(x,v)dv
eP (x,t)
#5?:/%  $0[QP[,/’1, 5
ω(v)e−R(x,v)dv 4"#/
%		3U, /%7%, 931a’1, 2 @$Æ4_.
3.2 A.-
x+d
x
8/:	 Y (t)!  K(t)" L(t) B A(t), 83S8 t 8, 7-%.5:
(18)
(k) < 0, 	,   f(0) = 0. #, 	V.58 f J Inada
Y (t) = F (K(t), A(t)L(t))
(21)
7, ˜c(t) #Q t Q%@,/%P[,/’1!, A(t) ˜c(t) #Q t Q%@,
/%4’1!. I	V.5,  P[,"! 3+ :
˙K(t) = F (K(t), A(t)L(t)) − A(t)˜c(t)
˙k(t) = f(k) − ˜c(t)
L(t)
− k(t)g
  )!, ˙k(t) 4!LA1!, 4! f(k) − ˜c(t)
L(t), Æ,, DZ, 1
! k(t)g. $\R N/m,  x Q	@,/%  t QP[,/’1!
N/m · c(x, t).   t Q, %/%	Q t − m, /%	Q t,  t Q
%@,/%P[,/’1!:
N
m
c(x, x)eP (x,t)dx
c(x, t)dx =
˜c(t) =
N
m
t
t−m
t
t−m
)* ˙k = 0, k R, #, 	- r P[,"! ω  R,  8 t  , 	 r
∗, 5 (23)  I:
ω
˜c(t) = N
m
· ω
∗
∗( r
θ
− ρ
(e( r∗
θ
θ
− r
− ρ
∗)d − 1)(e( r
∗−ρ−θg
∗)(e(g−r
−r∗)m − 1)(g − r∗)( r∗−ρ−θg
)m − 1)
)
θ
θ
θ
$ L = dN
m ,  :
˜c(t)
L(t)
∗
= ω
d
∗
· ( r
θ
− ρ
(e( r∗
θ
θ
− r
− ρ
θ
∗)d − 1)(e( r
∗)(e(g−r
−r∗)m − 1)(g − r∗)( r∗−ρ−θg
∗−ρ−θg
θ
)
)m − 1)
θ
342
        
 38 
)* ˙k = 0, "5 (22)  :
− ρ
(26)
(e( r∗
∗), 72@ {ρ, θ, d, m, g}  #"’. ]’
∗)(e(g−r
−r∗)m − 1)(g − r∗)( r∗−ρ−θg
) − ω
d
∗) − k
f(k
∗ = f(k
∗)d − 1)(e( r
)m − 1)
− r
− ρ
∗ = f
∗), ω
∗−ρ−θg
· ( r
(k
(k
= k
∗
∗
∗
∗
g
)
∗
θ
θ
θ
θ
θ
θ
5, r
 C., (=@,  0.
3.4  !1EF34
f
=/8D1	- <-8. ?:&!, B(%	Æ
 C, 	- <-*]’, #%*]’=*)’, 
		. )K 1949–1957 8, 	’	(1C
:O ‘7<,  <-[B, 	-4 :(1, #	/-:
:>*. 1949 	,  5.42 ,   1957 	,   6.47 , 8 8\! 1.05 , 9
)K>C:b. ), =8$ “	7”  “ <7” c1’.
J(0)
 %b	3QQ “	7” , %$0 QQ “ <7” , ?$
A%%=. -%, 62%Æ,, ’b	3
˙J(t)
J(t) = n 1’. n #Q-, B( n > 0, a-b	3!; B
J, 78$5
( n < 0, a-b	3L.  cZC,  !R 3	
6 “7” ,   ! n < 0, 4, !		@, n > 0 P
%. Æ,Q	3 J(0), # t Q	3 #Q J(t) = J(0)ent.   t 
Q, % 0   m , 	Q t   t−m, 	Q x \ J(0)enx, ,
˙N (t)
% N(t) =
N (t) =
(nent−nen(t−m))
(ent−en(t−m)) = n.   t Q, %" 0   d , 	Q t   t−d, 	Q
n (ent − en(t−d)).
 x \ J(0)enx, , %"3 L(t) =
(nent−nen(t−d))
(ent−en(t−d)) = n. , % 
%"-#Q
(nen(t−d)−nen(t−m))
n (en(t−d) − en(t−m)) 
3-#Q O(t) =
(en(t−d)−en(t−m)) = n.
(ent−en(t−d))
(ent−en(t−m)) = 1−e−nd
$ , %"] L(t)
N (t) = l(t) =
N (t) =
1 − o(t), l(t) #Q"], o(t) #Q] -, l(t)  o(t)  
 8 t  , I	 l  o. %-$0 Bd=, ∂l
∂n =
de−nd(1−e−nm)−me−nm(1−e−nd )
> 0, $ ^, "’$0 , B(3L]’ 8, #
n (ent − en(t−m)). %-#Q
t−d
t−m J(0)enxdx = J(0)
t−d J(0)enxdx = J(0)
t−m J(0)enxdx = J(0)
1−e−nm . ’ L(t)
˙L(t)
L(t) =
˙O(t)
O(t) =
n
J(0)
n
J(0)
n
J(0)
n
J(0)
J(0)
J(0)
J(0)
n
n
n
n
t
t
(1−e−nm)2
 =; 3,3!L, =. ∂l
0, $ ^, $0 J, "J,  JR.
3.5  !56H/	0C
∂m = n(e−nd−1)e−nm
(1−e−nm)2 <
]’ C7<&!%L, /\@7<] 
0, #)*6I!.   x Q	/%#F, 7	’1*de/ %5 (16)
5 (17) ?:. x Q	/%3 J(x) = J(0)enx,  x Q	@,/%  t QP[,/
’1! J(0)enxc(x, t).   t Q, %/%	Q t − m, /%	Q
 t,  t Q%@,/%P[,/’1!:
t
t−m
t
t−m
˜c(t) =
J(x)c(x, t)dx =
J(0)enxc(x, t)dx
%	%’1!, :
˙K(t) = F (K(t), A(t)L(t)) − A(t)˜c(t)
 ,  P[,"! 3+ :
˙k(t) = f(k) − ˜c(t)
L(t)
− k(t)(g + n)
(27)
(28)
(29)
 2 
, :  
  )!, ˙k(t) 4!LA1!, 4! f(k) − ˜c(t)
L(t), Æ,, DZ, 1
! k(t)(g + n). )* ˙k = 0, k R, #, 	- r P[,"! ω  R,  8 t  
, 	 r
 ω
343
∗
θ
∗
ω
c(x, x) =
∗)(e(g−r
∗, c(x, x)c(x, t)˜c(t)  I:
∗( r
(e( r∗
∗)d − 1)
− r
−r∗)m − 1)(g − r∗)
∗−ρ−θg
− r
∗)(e(g−r
θ
−r∗)m − 1)(g − r∗)( r∗−ρ−θg
− ρ
− r
∗)d − 1)
−r∗)m − 1)(g − r∗)
· e( r
− ρ
θ
− ρ
∗)(e(g−r
∗)d − 1)(e( r
− ρ
(e( r∗
∗( r
(e( r∗
− ρ
θ
− ρ
c(x, t) =
)(t−x)
∗−ρ−θg
∗( r
ω
∗
∗
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
(30)
(31)
(32)
−n)m − 1)
− n)
˜c(t) =
J(0)enxc(x, t)dx = J(0)ent · ω
t
t−m
n (ent − en(t−d)),  :
, L(t) = J(0)
∗)d−1)(e( r
∗
− ρ
−r
∗( r
(e( r∗
θ
− ρ
θ
θ
n (ent − en(t−d))
J(0)
∗−ρ−θg
∗)(e(g−r
−r∗)m−1)(g−r∗)( r∗−ρ−θg
J(0)ent · ω
=
θ
θ
θ
˜c(t)
L(t)
−n)m−1)
−n)
∗( r
ω
(e( r∗
∗
− r
∗)(e(g−r
− ρ
∗)d − 1)(e( r
θ
−r∗)m − 1)(g − r∗)( r∗−ρ−θg
− ρ
θ
θ
θ
∗−ρ−θg
θ
−n)m − 1)n
− n)(1 − e−nd)
=
θ
(33)
, $P[,"! 3+  :
θ
θ
θ
θ
∗
f
∗
∗
∗−ρ−θg
(k
(k
− r
∗ = f
∗( r
) − ω
(e( r∗
∗ = f(k
−n)m − 1)n
− n)(1 − e−nd)
∗)(e(g−r
− ρ
∗)d − 1)(e( r
θ
−r∗)m − 1)(g − r∗)( r∗−ρ−θg
− ρ
∗) − k
∗
f(k
∗), ω
(34)
∗), 72@ {ρ, θ, d, m, n, g}  #"’. 5, J
5, r
∗) = g + n, ("	(, , 7c (^:)*.,  C%
(k
f
(, Æ,8_ - e.F!, (-%^).  "’@‘, %
(+Æ	P[,"! 3 5 (34),  k1  k2 ?/ 0. B 1 @Q,  g k1 
)’, k2 )’, -%, ! + 5 (29),  k  k2 -R"KKE, ˙k(t) < 0, #
k   k2;  k  k2 -"KKE, ˙k(t) > 0, # k   k2. , k2 )’,
, k1 )’. %10<=P[,"! 3 k2.
(g + n)
= k
θ
k1
k2
=0.6 n=-0.0123 g=0.05
k
=0.01 =0.75 d=37 m=48
=0.01 =0.75 d=37 m=56
=0.01 =0.75 d=37 m=70
7 1 K89:; sM<
7 2 K89:; sM