logo资料库

高速比较器的设计及计算.pdf

第1页 / 共21页
第2页 / 共21页
第3页 / 共21页
第4页 / 共21页
第5页 / 共21页
第6页 / 共21页
第7页 / 共21页
第8页 / 共21页
资料共21页,剩余部分请下载后查看
High Speed Voltage Comparator
Input Stage
Decision stage
Output stage
CSDS Input Dynamic Range
Translation of Decision Circuit Output Voltage Swing
Wide-Swing High Speed Comparator Circuit
High Speed Voltage Comparator DD when when A voltage comparator is an analog circuit that convert an analog signal to digital signal level. Figure 1(a) shows the basic operation of comparator. That is, V V = OUT V = SS The comparator basically can be decomposed into three stages shown in Figure 1(b). The stages are input stage, decision stage, output stage. The input stage converts the input voltages to currents level needed to drive the decision stage. The decision stage is a non-linear cross-coupled circuit which switch from one state to another, the feedback speed up the switching. The output stage buffer the decision stage and convert the signal level to digital signal level. V V > - + V V > - + V+ V- + - (a) Vout Vout = VDD when V+>V- = VSS when V+
M31 M3 io- M41 io+ M4 M1 M2 v+ + v- 2 v+ v+ - v- 2 v- io+ io- ISS (a) io+ ISS 2 gm1VGS1 = gm1 2 (V+ - V-) (b) Figure 2 (a) Input stage circuit and (b) Small signal equivalent circuit of M1 gain stage. 2
Decision stage io+ io- vo+ vo+ vo+ vo- vo- vo- M5 M6 M7 M8 (a) io+ io- M5 M6 M7 M8 (b) io+ io- M5 M6 M7 M8 (c) Figure 3(a) Decision stage circuit. 3(b) Equivalent circuit when Vo+ > Vo- . 3(c) Equivalent circuit when Vo+ < Vo- 3
o -o The decision circuit is a bistable cross coupled circuit shown in Figure 3(a). It is in one state or = = i 8 i off is M7 , 0 i 7 is M5 , 0 i off 5 bias current constant since ; i i = + = 8 7 i i ; since = + = 6 5 6 + i I ; I = + = B another. The state is determined by the magnitude of the input currents. If io- >> io+ M6 and M8 are on and M5 and M7 are off. Figure 3(b) shows the following conditions hold: i i i Under these conditions, Vo+ = VDS6≈ 0 (M6 is on) and Vo- is determined by the value of VGS8 when i8=io- . That is, i )V-V( TN )V-V( TN -(2) = = = -o -o i B + 2 o 2 β 8 2 = -o 8 where βββ 8 GS8 = A 5 β A 2 -(3) To change state, increase io+ hence decrease io- (=IB – io+). The decrease in io- will cause Vo- to decrease by eq(3). The Vo- = VGS6, hence the decrease Vo- will eventually shut off M6. The value of Vo- just before the M6 shut off is given by: i )V-V( TN -(4) = = i 2 2 β B 2 )V-V( TN -o =+ o 6 where βββ 7 GS6 = B 6 β 6 2 = Dividing eq(4) and eq(3), one obtains i i =+ o -o β B β A The value of Vo- is determined as follows from eq(2): V -o = 2i -o β A TN + V -(5) -(6) Re-analyzing the decision circuit starting with the other state, see Figure 3(c). The value Vo+ is given by: V o + = + 2i o β A TN + V -(7) That is, the maximum value of Vo- and Vo+ can both be bounded to less than 2VTN, by adjusting βA. For The trigger voltage is given by V T V T From eq(1), the trigger voltage can be calculated as follows: V-V - V-V + −= -(8) V T = = + − + − + 4
V T = + 2 g m i( o + - I SS 2 ) = I SS g ( i2 I SS o + − )1 = I SS g m ( i m β B β A β B β A ( i i − i -o -o − i -o -o ) = I SS g m i2 o + o + β B β A β B β A ( + i -o − 1 − 1 − )1 V) = -T -(9) = I SS g m ( i i o + o + − + i i -o -o ) = I SS g m If βB=βA , VT+ =- VT- = 0. That is no hysteresis. If βB=2βA g = = IK N m 2(W/L) 1 I 12( − SS 12 g + m ) = DSQ1 I SS 3g m = )](12/(12[2 − 6-E20 3(97.98E - 6) = V T + = 068.0 −= V -T -E10)(6E40 − 6) = 98.97 umho + The threshold computed above is based on the assumption that the input threshold is 0 (V-=0). But the actual input threshold voltage is 2.5V (V- = 2.5V). The actual thresholds are: V T V T The simulation results are VT+ = 2.568 and VT- = 2.4326. The maximum output voltage of the decision circuit Vo+(max) is obtained from eq(7). 2.568 2.4326 0.068 0.068 2.5 + 2.5 − = = = = − (V + o max) = 2i = o (max) + β A 2(20E 6) - 6[6/(2 - -E40 408.11 =+ 1)] + V TN = 2I SS β A + V TN = 2I SS (W/L) N K + V TN The Pspice simulation result is 1.41V. 5
* Filename="diffhi2n.cir" * High speed decision circuit * Input Signals V+ 1 0 DC 0V V- 2 0 DC 2.5V * Power Supplies VDD 3 0 DC 5VOLT VSS 4 0 DC 0VOLT ISS 5 0 DC 20uA * Netlist for CMOS COMPARATOR in Pwell M1 6 1 5 5 M2 7 2 5 5 M3 8 6 3 3 M31 6 6 3 3 M4 9 7 3 3 M41 7 7 3 3 * Decision Stage M5 8 8 4 4 NMOS1 W=6U L=2U M6 8 9 4 4 NMOS1 W=12U L=2U NMOS1 W=12U L=2U M7 9 8 4 4 M8 9 9 4 4 NMOS1 W=6U L=2U * SPICE Parameters .MODEL NMOS1 NMOS VTO=1 KP=40U + GAMMA=1.0 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 + U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 .MODEL PMOS1 PMOS VTO=-1 KP=15U + GAMMA=0.6 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 NMOS1 W=12U L=2U NMOS1 W=12U L=2U L=2U PMOS1 W=6U PMOS1 W=6U L=2U L=2U PMOS1 W=6U PMOS1 W=6U L=2U 6
NMOS1 W=12U L=2U NMOS1 W=12U L=2U PMOS1 W=6U L=2U L=2U PMOS1 W=6U L=2U PMOS1 W=6U PMOS1 W=6U L=2U + U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 * Analysis .DC V+ 2V 3V 1mV .PROBE .END * Filename="diffhi2n.cir" * High speed decision circuit * Input Signals V+ 1 0 DC 0V V- 2 0 DC 2.5V * Power Supplies VDD 3 0 DC 5VOLT VSS 4 0 DC 0VOLT ISS 5 0 DC 20uA * Netlist for CMOS COMPARATOR in Pwell M1 6 1 5 5 M2 7 2 5 5 M3 8 6 3 3 M31 6 6 3 3 M4 9 7 3 3 M41 7 7 3 3 * Decision Stage M5 8 8 4 4 NMOS1 W=6U L=2U M6 8 9 4 4 NMOS1 W=12U L=2U NMOS1 W=12U L=2U M7 9 8 4 4 M8 9 9 4 4 NMOS1 W=6U L=2U * SPICE Parameters .MODEL NMOS1 NMOS VTO=1 KP=40U + GAMMA=1.0 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 + U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 .MODEL PMOS1 PMOS VTO=-1 KP=15U + GAMMA=0.6 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 + U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 * Analysis .DC V+ 3V 2V -1mV *.TRAN .1ns 40us .PROBE .END 7
* Filename="diffhi1n.cir" * High speed decision circuit .LIB C:\e595\lib\mypspice.lib * Input Signals * Input V+ sweep from 2V to 3V V+ 1 0 DC 0V V- 2 0 DC 2.5V * Power Supplies VDD 3 0 DC 5VOLT VSS 4 0 DC 0VOLT ISS 5 0 DC 20uA * Netlist for CMOS COMPARATOR in Nwell M1 6 1 5 4 M2 7 2 5 4 M3 8 6 3 3 M31 6 6 3 3 M4 9 7 3 3 M41 7 7 3 3 * Decision Stage M5 8 8 4 4 M6 8 9 4 4 M7 9 8 4 4 M8 9 9 4 4 * Analysis NMOS1 W=12U L=2U NMOS1 W=12U L=2U PMOS1 W=6U L=2U PMOS1 W=6U L=2U PMOS1 W=6U L=2U PMOS1 W=6U L=2U NMOS1 W=6U L=2U NMOS1 W=6U L=2U NMOS1 W=6U L=2U NMOS1 W=6U L=2U 8
分享到:
收藏