High Speed Voltage Comparator 
DD
 when 
 when 
A voltage comparator is an analog circuit that convert an analog signal to digital signal level. 
 
 
Figure 1(a) shows the basic operation of comparator. That is, 
 
 
V
V
=
OUT
         
V  
=
SS
 
The comparator basically can be decomposed into three stages shown in Figure 1(b). The stages are input 
stage, decision stage, output stage. The input stage converts the input voltages to currents level  needed to 
drive the decision stage.  The decision stage is a non-linear cross-coupled circuit which switch from one 
state to another, the feedback speed up the switching. The output stage buffer the decision stage and 
convert the signal level to digital signal level. 
 
 V
V 
>
-
+
 V
V 
>
-
+
V+
V-
+
-
(a)
Vout
Vout = VDD when V+>V-
         = VSS when V+
 
 
 
 
 
 
 
 
 
 
 
 
M31
M3
io-
M41
io+
M4
M1
M2
v+ + v-
2
v+
v+ - v-
2
v-
io+
io-
ISS
(a)
io+
ISS
2
gm1VGS1
=
gm1
2 (V+ - V-)
(b)
Figure 2 (a) Input stage circuit and (b) Small signal equivalent
circuit of M1 gain stage.
 
2
Decision stage 
 
 
io+
io-
vo+
vo+
vo+
vo-
vo-
vo-
M5 M6
M7 M8
(a)
io+
io-
M5 M6
M7 M8
(b)
io+
io-
M5 M6
M7 M8
(c)
Figure 3(a) Decision stage circuit. 3(b) Equivalent circuit when Vo+ > Vo-  .
3(c) Equivalent circuit when Vo+ < Vo-
 
 
 
3
o
-o
The decision circuit is a bistable cross coupled circuit  shown in Figure 3(a). It is in one state or 
=
=
i
  8
i
 off
 is M7 , 0 i 
7
 is M5 , 0 i 
 off
5
bias
current
constant 
 
since
 ;  
 i 
 i
=
+
=
8
7
 i
 i 
 ;  
since
=
+
=
6
5
  6
+
i 
 
 I ;
I
 
        
=
+
=
B
another. The state is determined by the magnitude of the input currents. If io- >> io+ M6 and M8 are on and 
M5 and M7 are off. Figure 3(b) shows the following conditions hold: 
 
i
i
i
 
Under these conditions, Vo+ = VDS6≈ 0 (M6 is on) and Vo- is determined by the value of VGS8  when i8=io- . 
That is, 
 
i
 
)V-V(
TN
)V-V(
TN
       -(2) 
  
 
 
 
=
=
=
-o
-o
i
B
 
 
 
+
2
o
2
β
8
2
=
-o
8
 
where
βββ
8
GS8
=
A
5
β
A
2
 
 
 
 
 
-(3) 
To change state, increase io+ hence decrease io- (=IB – io+). The decrease in io- will cause Vo- to decrease by 
eq(3). The Vo- = VGS6, hence the decrease Vo- will eventually shut off M6. The value of Vo- just before the 
M6 shut off is given by: 
 
i
)V-V(
TN
-(4) 
=
=
 
 
i
 
 
2
2
β
B
2
)V-V(
TN
 
-o
=+
o
6
where
 
βββ
7
GS6
=
B
6
β
6
2
=
 
 
 
Dividing eq(4) and eq(3), one obtains 
 
i
i
 
 
=+
o
 
-o
β
B
β
A
 
 
 
 
 
The value of Vo- is determined as follows from eq(2): 
 
V
-o
=
2i
-o
β
A
 
TN
+
V
 
 
 
 
 
 
 
 
 
      -(5) 
    -(6) 
 
 
Re-analyzing the decision circuit starting with the other state, see Figure 3(c). The value Vo+ is given by: 
 
V
o
+
=
+
2i
o
β
A
 
TN
+
V
 
 
 
 
 
 
 
-(7) 
That is, the maximum value of Vo-  and Vo+ can both be bounded to less than 2VTN, by adjusting βA. For  
 
The trigger voltage is given by  
 
V
T
V
T
 
From eq(1), the trigger voltage can be calculated as follows: 
V-V
-
V-V
+
 
−=
         -(8) 
V
T
=
=
 
 
 
 
 
 
+
−
+
−
+
 
4
 
V
T
=
+
2
g
m
i(
o
+
-
I
SS
2
)
=
I
SS
g
(
i2
I
SS
o
+
−
)1
=
I
SS
g
m
(
i
m
β
B
β
A
β
B
β
A
(
i
i
−
i
-o
-o
−
i
-o
-o
)
=
I
SS
g
m
i2
o
+
o
+
β
B
β
A
β
B
β
A
(
+
i
-o
−
1
−
1
−
)1
 
 
 
 
V)
=
-T
 
 
 
 
 
-(9) 
   
=
I
SS
g
m
(
i
i
o
+
o
+
−
+
i
i
-o
-o
)
=
I
SS
g
m
 
 
If βB=βA , VT+ =- VT- = 0. That is no hysteresis. If βB=2βA 
 
g
=
=
IK
N
m
2(W/L)
1
I
12(
−
SS
12
g
+
m
)
=
DSQ1
I
SS
3g
m
=
)](12/(12[2
−
6-E20
3(97.98E
-
6)
=
V
T
+
=
068.0
−=
V
-T
-E10)(6E40
−
6)
=
 98.97
umho
+
 
The threshold computed above is based on the assumption that the input threshold is 0 (V-=0). But the 
actual input threshold voltage is 2.5V (V- = 2.5V). The actual thresholds are: 
 
V
T
V
T
 
The simulation results are VT+ = 2.568 and VT- = 2.4326. The maximum output voltage of the decision 
circuit Vo+(max) is obtained from eq(7). 
 
2.568
2.4326
0.068
0.068
 2.5
+
 2.5
−
=
=
=
=
−
(V
+
o
max)
=
2i
          
     
=
o
(max)
+
β
A
2(20E
6)
-
6[6/(2
-
-E40
408.11
=+
1)]
+
V
TN
=
2I
SS
β
A
+
V
TN
=
2I
SS
(W/L)
N
K
+
V
TN
 
The Pspice simulation result is 1.41V. 
 
 
 
 
 
 
 
 
 
 
5
 
 
* Filename="diffhi2n.cir" 
* High speed decision circuit 
 
* Input Signals 
V+ 1 0 DC 0V 
V- 2 0 DC 2.5V 
 
* Power Supplies 
VDD 3 0 DC 5VOLT 
VSS 4 0 DC 0VOLT 
ISS 5 0 DC 20uA 
 
* Netlist for CMOS COMPARATOR in Pwell 
  
M1  6 1 5 5 
M2  7 2 5 5  
M3  8 6 3 3 
M31 6 6 3 3 
M4  9 7 3 3  
M41 7 7 3 3  
 
* Decision Stage 
M5  8 8 4 4    NMOS1  W=6U    L=2U 
M6  8 9 4 4    NMOS1   W=12U   L=2U 
NMOS1   W=12U   L=2U 
M7  9 8 4 4  
M8  9 9 4 4  
NMOS1   W=6U 
L=2U 
 
 
* SPICE Parameters 
.MODEL NMOS1 NMOS VTO=1 KP=40U 
+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6 
+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 
+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 
.MODEL PMOS1 PMOS VTO=-1 KP=15U 
+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6 
+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 
NMOS1  W=12U  L=2U 
NMOS1  W=12U  L=2U 
L=2U 
PMOS1  W=6U 
PMOS1  W=6U 
L=2U 
L=2U 
PMOS1  W=6U 
PMOS1  W=6U 
L=2U 
 
6
NMOS1  W=12U  L=2U 
NMOS1  W=12U  L=2U 
PMOS1  W=6U 
L=2U 
L=2U 
PMOS1  W=6U 
L=2U 
PMOS1  W=6U 
PMOS1  W=6U 
L=2U 
+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 
 
* Analysis 
.DC V+ 2V 3V 1mV 
.PROBE 
.END 
* Filename="diffhi2n.cir" 
* High speed decision circuit 
 
* Input Signals 
V+ 1 0 DC 0V 
V- 2 0 DC 2.5V 
 
* Power Supplies 
VDD 3 0 DC 5VOLT 
VSS 4 0 DC 0VOLT 
ISS 5 0 DC 20uA 
 
* Netlist for CMOS COMPARATOR in Pwell 
M1  6 1 5 5 
M2  7 2 5 5  
M3  8 6 3 3 
M31 6 6 3 3 
M4  9 7 3 3  
M41 7 7 3 3  
 
* Decision Stage 
M5  8 8 4 4    NMOS1  W=6U    L=2U 
M6  8 9 4 4    NMOS1   W=12U   L=2U 
NMOS1   W=12U   L=2U 
M7  9 8 4 4  
M8  9 9 4 4  
NMOS1   W=6U 
L=2U 
 
* SPICE Parameters 
.MODEL NMOS1 NMOS VTO=1 KP=40U 
+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6 
+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 
+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 
.MODEL PMOS1 PMOS VTO=-1 KP=15U 
+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6 
+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 
+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 
 
* Analysis 
.DC V+ 3V 2V -1mV 
*.TRAN .1ns 40us 
.PROBE 
.END 
 
 
 
 
 
  
 
 
7
 
 
 
* Filename="diffhi1n.cir" 
* High speed decision circuit 
.LIB C:\e595\lib\mypspice.lib 
* Input Signals 
* Input V+ sweep from 2V to 3V  
V+ 1 0 DC 0V 
V- 2 0 DC 2.5V 
 
* Power Supplies 
VDD 3 0 DC 5VOLT 
VSS 4 0 DC 0VOLT 
ISS 5 0 DC 20uA 
 
* Netlist for CMOS COMPARATOR in Nwell 
  
M1  6 1 5 4 
M2  7 2 5 4  
M3  8 6 3 3 
M31 6 6 3 3 
M4  9 7 3 3  
M41 7 7 3 3  
 
* Decision Stage 
M5  8 8 4 4   
M6  8 9 4 4   
M7  9 8 4 4  
M8  9 9 4 4  
 
* Analysis 
NMOS1 W=12U L=2U 
NMOS1 W=12U L=2U 
PMOS1 W=6U  L=2U 
PMOS1 W=6U  L=2U 
PMOS1 W=6U  L=2U 
PMOS1 W=6U  L=2U 
NMOS1 W=6U   L=2U 
NMOS1  W=6U  L=2U 
NMOS1  W=6U   L=2U 
NMOS1  W=6U  L=2U 
 
8