基本等价式 :
1) E1:(G H)(G→H)∧(H→G)
2) E2:(G→H) (~G∨H)
3) E3:G∨G G
E4:G∧G G
4) E5:G∨H H∨G
E6:G∧H H∧G
5) E7:G∨(H∨S) (G∨H)∨S
E8: G∧(H∧S) (G∧H)∧S
6) E9:G∨(G∧H) G
E10:G∧(G∨H) G
(等价)
(蕴涵)
(幂等律)
(交换律)
(结合律)
(吸收律)
7) E11:G∨(H∧S) (G∨H)∧(G∨S)
E12:G∧(H∨S) (G∧H)∨(G∧S)
(分配律)
8) E13:G∨F G
E14:G∧T G
9) E15:G∨T T
E16:G∧F F
(同一律)
(零律)
10) E17:G∨~G T
11) E18:G∧~G F
12) E19:~ (~G) G
13) E20:(G∧H)→S G→(H→S)
14) E21:(GH)(~G∧H)∨(G∧~H)
15) E22:P→Q ~Q→~P
16) E23:~ (G∨H) ~G∧~H
E24:~ (G∧H) ~G∨~H。
(矛盾律)
(双重否定律)
(输出律)√
(排中律)
(逆反律)√
(De Morgan 定律)
17) E25: ~(x)P(x) (x)[~P(x)]
18) E26: ~(x)P(x) (x)[~P(x)]
19) E27: (x)[P(x)∨Q] (x)P(x)∨Q
20) E28: (x)[P(x)∧Q] (x)P(x)∧Q
21) E29: (x)[P(x)∨Q] (x)P(x)∨Q
22) E30: (x)[P(x)∧Q] (x)P(x)∧Q
23) E31: (x)P(x)Q (x)[P(x)Q]
24) E32: (x)P(x)Q (x)[P(x)Q]
25) E33: Q(x)P(x) (x)[Q P(x)]
26) E34: Q(x)P(x) (x)[Q P(x))]
27) E35: (x)(P(x)∧Q(x))(x)P(x)∧(x)Q(x)
28) E36: (x)(y)(P(x)∨Q(y))(x)P(x)∨(x)Q(x)
29) E37: (x)(y)(P(x)∧Q(y))(x)P(x)∧(x)Q(x)
30) E38: (x)(P(x)∨Q(x))(x)P(x)∨(x)Q(x)
31) E39: (x)(P(x)Q(x))(x)p(x)(x)Q(x)
32) E40: (x)(y)A(x,y)(y)(x)A(x,y)
33) E41: (x)(y)A(x,y)(y)(x)A(x,y)
基本蕴含式:
I1:PP∨Q , QP∨Q
~PP→Q , QP→Q
扩充法则(析取引入律)
I2:P∧Q P , P∧QQ
~(P→Q)P ,~(P→Q)~Q 化简法则(合取消去律)
假言推论(分离规则)
I3:P∧(P→Q) Q
I4:~Q∧(P→Q) ~P 否定式假言推论(拒取式)
I5:~P∧(P∨Q) Q
析取三段论(选言三段论)
I6:(P→Q)∧(Q→R) P→R 假言(前提条件)三段论
I7:(P∨Q)∧(P→R)∧(Q→R) R 二难推论
I8:(P→Q)∧(R→S)(P∧R)→(Q∧S)
I9:(PQ)∧(QR) PR
I10:(P∨Q)∧(~P∨R) Q∨R 归结原理
I11: (x)P(x)∨(x)Q(x)(x)(P(x)∨Q(x))
I12: (x)(P(x)∧Q(x))(x)P(x)∧(x)Q(x)
I13: (x)(P(x)→Q(x))(x)P(x)→(x)Q(x)
I14: (x)P(x)→(x)Q(x)(x)(P(x)→Q(x))
I15: (x)(P(x)Q(x))(x)P(x)(x)Q(x)
I16 :xyP(x,y)yxP(x,y)
I17 :yxP(x,y)xyP(x,y)
I18 :yxP(x,y)xyP(x,y)
I19 :xyP(x,y)yxP(x,y)
I20 :xyP(x,y)yxP(x,y)
I21 :yxP(x,y)xyP(x,y)
I22 :xyP(x,y)xyP(x,y)
I23 :yxP(x,y)yxP(x,y)