logo资料库

sliding mode control in electro-mechanical systems(机电系统的滑模控制).pdf

第1页 / 共487页
第2页 / 共487页
第3页 / 共487页
第4页 / 共487页
第5页 / 共487页
第6页 / 共487页
第7页 / 共487页
第8页 / 共487页
资料共487页,剩余部分请下载后查看
front-matter
Sliding Mode Control in Electro-Mechanical Systems, Second Edition
Contents
Preface to the Second Edition
Authors
Vadim Utkin, PhD, DSc
Jingxin Shi
Jürgen Guldner, PhD
ch01
Chapter 1: Introduction
1.1. Examples of Dynamic Systems with Sliding Modes
1.2. Sliding Modes in Relay and Variable Structure Systems
1.3. Multidimensional Sliding Modes
1.4. Outline of Sliding Mode Control Methodology
References
ch02
Chapter 2: Mathematical Background
2.1. Problem Statement
2.2. Regularization
2.3. Equivalent Control Method
2.4. Physical Meaning of Equivalent Control
2.5. Existence Conditions
References
ch03
Chapter 3: Design Concepts
3.1. Introductory Example
3.2. Decoupling
3.3. Regular Form
3.4. Invariance
3.5. Unit Control
3.6. Second-Order Sliding Mode Control
3.6.1. Preliminary Remarks
3.6.2. Twisting Algorithm
3.6.3. Super-Twisting Algorithm
References
ch04
Chapter 4: Sliding Mode Control of Pendulum Systems
4.1. Design Methodology
4.1.1. Case 4.1
4.1.2. Case 4.2
4.1.3. Case 4.3
4.1.4. Case 4.4
4.2. Cart Pendulum
4.3. Rotational Inverted Pendulum Model
4.4. Rotational Inverted Pendulum
4.4.1. Control of the Inverted Pendulum
4.4.2. Control of the Base Angle and Inverted Pendulum
4.5. Simulation and Experiment Results for Rotational Inverted Pendulum
4.5.1. Stabilization of the Inverted Pendulum
4.5.2. Stabilization of the Inverted Pendulum and the Base
References
ch05
Chapter 5: Control of Linear Systems
5.1. Eigenvalue Placement
5.2. Invariant Systems
5.3. Sliding Mode Dynamic Compensators
5.4. Ackermann’s Formula
5.4.1. Simulation Results
5.5. Output Feedback Sliding Mode Control
5.6. Control of Time-Varying Systems
References
ch06
Chapter 6: Sliding Mode Observers
6.1. Linear Asymptotic Observers
6.2. Observers for Linear Time-Invariant Systems
6.3. Observers for Linear Time-Varying Systems
6.3.1. Block-Observable Form
6.3.2. Observer Design
6.3.3. Simulation Results
6.3.4. Case 6.1: The System with Zero Disturbances
6.3.5. Case 6.2: The System with Disturbances
6.4. Observer for Linear Systems with Binary Output
6.4.1. Observer Design
References
ch07
Chapter 7: Integral Sliding Mode
7.1. Motivation
7.2. Problem Statement
7.3. Design Principles
7.4. Perturbation and Uncertainty Estimation
7.5. Examples
7.5.1. Linear Time-Invariant Systems
7.5.2. Control of Robot Manipulators
7.5.3. Pulse-Width Modulation for Electric Drives
7.5.4. Robust Current Control for Permanent-Magnet Synchronous Motors
7.6. Summary
References
ch08
Chapter 8: The Chattering Problem
8.1. Problem Analysis
8.1.1. Example System: Model
8.1.2. Example System: Ideal Sliding Mode
8.1.3. Example System: Causes of Chattering
8.1.4. Describing Function Method for Chattering Analysis
8.2. Boundary Layer Solution
8.3. Observer-Based Solution
8.4. Regular Form Solution
8.5. Disturbance Rejection Solution
8.6. State-Dependent Gain Method
8.7. Equivalent Control-Dependent Gain Method
8.8. Multiphase Chattering Suppression
8.8.1. Problem Statement
8.8.2. Design Principle
8.9. Comparing the Different Solutions
References
ch09
Chapter 9: Discrete-Time and Delay Systems
9.1. Introduction to Discrete-Time Systems
9.2. Discrete-Time Sliding Mode Concept
9.3. Linear Discrete-Time Systems with Known Parameters
9.4. Linear Discrete-Time Systems with Unknown Parameters
9.5. Introduction to Systems with Delays and Distributed Systems
9.6. Linear Systems with Delays
9.7. Distributed Systems
9.8. Summary
References
ch10
Chapter 10: Electric Drives
10.1. DC Motors
10.1.1. Introduction
10.1.2. Model of the DC Motor
10.1.3. Current Control
10.1.4. Speed Control
10.1.5. Integrated Structure for Speed Control
10.1.6. Observer Design
10.1.7. Speed Control with Reduced-Order Model
10.1.8. Observer Design for Sensorless Control
10.1.8.1. Estimation of the Shaft Speed
10.1.8.2. Estimation of Load Torque
10.1.9. Discussion
10.2. Permanent-Magnet Synchronous Motors
10.2.1. Introduction
10.2.2. Modeling of Permanent-Magnet Synchronous Motors
10.2.3. Sliding Mode Current Control
10.2.3.1. First Method for Current Control
10.2.3.2. Second Method for Current Control
10.2.4. Speed Control
10.2.5. Current Observer
10.2.6. Observer for Speed Sensorless Control
10.2.6.1. Current Observer for EMF Components
10.2.6.2. Observer for EMF Components
10.2.7. Discussion
10.3. Induction Motors
10.3.1. Introduction
10.3.2. Model of the Induction Motor
10.3.3. Rotor Flux Observer with Known Rotor Speed
10.3.3.1. Online Simulation of Rotor Flux Model
10.3.3.2. Sliding Mode Observer with Adjustable Rate of Convergence
10.3.4. Simultaneous Observation of Rotor Flux and Rotor Speed
10.3.4.1. Analysis of Current Tracking
10.3.4.2. Composite Observer-Controller Analysis
Assumption
10.3.4.3. Simulation Results
10.3.4.4. Experimental Results
10.3.5. Speed, Rotor Time Constant Observer, and Experimental Results
10.3.6 Direct Torque and Flux Control
10.3.6.1. Supplement: Cascaded Torque and Flux Control Via Phase Currents
10.4. Summary
References
ch11
Chapter 11: Power Converters
11.1. DC/DC Converters
11.1.1. Bilinear Systems
11.1.2. Direct Sliding Mode Control
11.1.2.1. Buck-Type DC/DC Converter
11.1.2.2. Boost-Type DC/DC Converter
11.1.3. Observer-Based Control
11.1.3.1. Observer-Based Control of Buck Converters
11.1.3.2. Observer-Based Control of Boost Converters
11.1.4. Multiphase Converters
11.2. Boost-Type AC/DC Converters
11.2.1. Model of the Boost-Type AC/DC Converter
11.2.1.1. Model in Phase Coordinate Frame
11.2.1.2. Model in (d, q) Coordinate Frame
11.2.2. Control Problems
11.2.2.1. Sliding Mode Current Control
11.2.2.2. Output Voltage Regulation
11.2.2.3. Simulation Results
11.2.3. Observer for Sensorless Control
11.2.3.1. Current Observer for Source Phase Voltage
11.2.3.2. Observer for Source Voltage
11.2.3.3. Known Supply Frequency
11.2.3.4. Unknown Supply Frequency
11.2.3.5. Simulation Results
11.3. DC/AC Converter
11.3.1. Dynamic Model
11.3.2. Control Design: Sliding Mode PWM
11.3.2.1. Lyapunov Approach
11.3.2.2. Decoupling Approach
11.3.2.3. Possible Applications of vn Control
11.3.2.4. Simulation Results
11.3.2.5. Experimental Results
11.4. Summary
References
ch12
Chapter 12: Advanced Robotics
12.1. Dynamic Modeling
12.1.1. Generic Inertial Dynamics
12.1.2. Holonomic Robot Model
12.1.2.1. Mass Matrix
12.1.2.2. Skew Symmetry
12.1.2.3. Boundedness of Dynamic Terms
12.1.3. Nonholonomic Robots: Model of Wheel-Set
12.2. Trajectory Tracking Control
12.2.1. Componentwise Control
12.2.2. Vector Control
12.2.3. Continuous Feedback/Feedforward Control with Additional Discontinuity Term for Sliding Mode
12.2.4. Discussion of Sliding Mode Control Design Choices
12.3. Gradient Tracking Control
12.3.1. Control Objectives
12.3.2. Gradient Tracking Control Design for Holonomic Robots
12.3.3. Gradient Tracking Control Design for Nonholonomic Robots
12.4. Application Examples
12.4.1. Torque Control for Flexible Robot Joints
12.4.2. Collision Avoidance for Mobile Robots in a Known Planar Workspace
12.4.3. Collision Avoidance in Higher-Dimensional Known Workspaces
12.4.4. Automatic Steering Control for Passenger Cars
References
ch13
Chapter 13: Automotive Applications
13.1. Air/Fuel Ratio Control
13.2. Camless Combustion Engine
13.3. Observer for Automotive Alternator
References
Sliding Mode Control in Electro-Mechanical Systems S e c o n d E d i t i o n © 2009 by Taylor & Francis Group, LLC © 2009 by Taylor & Francis Group, LLC TAF-65602-08-1101-C000.indd i TAF-65602-08-1101-C000.indd i 3/31/09 7:43:43 PM 3/31/09 7:43:43 PM
AUTOMATION AND CONTROL ENGINEERING A Series of Reference Books and Textbooks Series Editors FRANK L. LEWIS, PH.D., FELLOW IEEE, FELLOW IFAC Professor SHUZHI SAM GE, PH.D., FELLOW IEEE Professor Automation and Robotics Research Institute The University of Texas at Arlington Interactive Digital Media Institute The National University of Singapore Sliding Mode Control in Electro-Mechanical Systems, Second Edition, Vadim Utkin, Jürgen Guldner, and Jingxin Shi Optimal Control: Weakly Coupled Systems and Applications, Zoran Gajic´, Myo-Taeg Lim, Dobrila Skataric´, Wu-Chung Su, and Vojislav Kecman Intelligent Systems: Modeling, Optimization, and Control, Yung C. Shin and Chengying Xu Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition, Frank L. Lewis; Lihua Xie and Dan Popa Feedback Control of Dynamic Bipedal Robot Locomotion, Eric R. Westervelt, Jessy W. Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin Morris Intelligent Freight Transportation, edited by Petros A. Ioannou Modeling and Control of Complex Systems, edited by Petros A. Ioannou and Andreas Pitsillides Wireless Ad Hoc and Sensor Networks: Protocols, Performance, and Control, Jagannathan Sarangapani Stochastic Hybrid Systems, edited by Christos G. Cassandras and John Lygeros Hard Disk Drive: Mechatronics and Control, Abdullah Al Mamun, Guo Xiao Guo, and Chao Bi Autonomous Mobile Robots: Sensing, Control, Decision Making and Applications, edited by Shuzhi Sam Ge and Frank L. Lewis Neural Network Control of Nonlinear Discrete-Time Systems, Jagannathan Sarangapani Quantitative Feedback Theory: Fundamentals and Applications, Second Edition, Constantine H. Houpis, Steven J. Rasmussen, and Mario Garcia-Sanz Fuzzy Controller Design: Theory and Applications, Zdenko Kovacic and Stjepan Bogdan Chaos in Automatic Control, edited by Wilfrid Perruquetti and Jean-Pierre Barbot Differentially Flat Systems, Hebertt Sira-Ramirez and Sunil Kumar Agrawal © 2009 by Taylor & Francis Group, LLC TAF-65602-08-1101-C000.indd ii TAF-65602-08-1101-C000.indd ii 3/31/09 7:44:07 PM 3/31/09 7:44:07 PM Downloaded by [Hong Kong University of Science & Technology] at 07:14 12 November 2013
Sliding Mode Control in Electro-Mechanical Systems S e c o n d E d i t i o n Vadim Utkin Ohio State University Columbus, Ohio, U.S.A. Jürgen Guldner BMW Group Munich, Germany Jingxin Shi TTTech Hettershausen, Germany Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2009 by Taylor & Francis Group, LLC © 2009 by Taylor & Francis Group, LLC TAF-65602-08-1101-C000.indd iii TAF-65602-08-1101-C000.indd iii 3/31/09 7:44:07 PM 3/31/09 7:44:07 PM Downloaded by [Hong Kong University of Science & Technology] at 07:14 12 November 2013
CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4200-6560-2 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher can- not assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2009 by Taylor & Francis Group, LLC © 2009 by Taylor & Francis Group, LLC TAF-65602-08-1101-C000.indd iv TAF-65602-08-1101-C000.indd iv 3/31/09 7:44:08 PM 3/31/09 7:44:08 PM Downloaded by [Hong Kong University of Science & Technology] at 07:14 12 November 2013
“To the memory of my parents, who gave me a good start and illuminate my way now”–V.U. “To my family, who always supports me strongly” –J.G. “To my wife, my mother, and the memory of my father” –J.S. © 2009 by Taylor & Francis Group, LLC TAF-65602-08-1101-C000.indd v TAF-65602-08-1101-C000.indd v 3/31/09 7:44:08 PM 3/31/09 7:44:08 PM Downloaded by [Hong Kong University of Science & Technology] at 07:14 12 November 2013
Contents Preface ................................................................................................................... xiii Authors ...................................................................................................................xv Chapter 1 Introduction ......................................................................................1 1.1. Examples of Dynamic Systems with Sliding Modes ................................1 1.2. Sliding Modes in Relay and Variable Structure Systems .........................4 1.3. Multidimensional Sliding Modes .............................................................. 10 1.4. Outline of Sliding Mode Control Methodology ..................................... 13 References ............................................................................................................... 15 Chapter 2 Mathematical Background ...........................................................17 2.1. Problem Statement ....................................................................................... 17 2.2. Regularization ..............................................................................................20 2.3. Equivalent Control Method ........................................................................28 2.4. Physical Meaning of Equivalent Control ................................................. 31 2.5. Existence Conditions ...................................................................................33 References ...............................................................................................................40 Chapter 3 Design Concepts ............................................................................ 41 3.1. Introductory Example ................................................................................. 41 3.2. Decoupling ....................................................................................................42 3.3. Regular Form ................................................................................................46 3.4. Invariance .....................................................................................................49 3.5. Unit Control ................................................................................................. 51 3.6. Second-Order Sliding Mode Control ........................................................54 3.6.1. Preliminary Remarks ......................................................................54 3.6.2. Twisting Algorithm ........................................................................56 3.6.3. Super-Twisting Algorithm .............................................................60 References ............................................................................................................... 62 Chapter 4 Sliding Mode Control of Pendulum Systems ..........................63 4.1. Design Methodology ...................................................................................63 4.1.1. Case 4.1 ..............................................................................................64 4.1.2. Case 4.2 ..............................................................................................65 4.1.3. Case 4.3 ..............................................................................................65 4.1.4. Case 4.4 ..............................................................................................66 4.2. Cart Pendulum ............................................................................................. 67 4.3. Rotational Inverted Pendulum Model ......................................................72 4.4. Rotational Inverted Pendulum................................................................... 74 © 2009 by Taylor & Francis Group, LLC vii TAF-65602-08-1101-C000.indd vii TAF-65602-08-1101-C000.indd vii 3/31/09 7:44:09 PM 3/31/09 7:44:09 PM Downloaded by [Hong Kong University of Science & Technology] at 07:14 12 November 2013
viii 4.5. Contents 4.4.1. Control of the Inverted Pendulum ................................................ 74 4.4.2. Control of the Base Angle and Inverted Pendulum ....................77 Simulation and Experiment Results for Rotational Inverted Pendulum ......................................................................................................79 4.5.1. Stabilization of the Inverted Pendulum........................................82 4.5.2. Stabilization of the Inverted Pendulum and the Base ..............................................................................................84 References ............................................................................................................... 91 Chapter 5 Control of Linear Systems ............................................................93 5.1. Eigenvalue Placement ..................................................................................93 5.2. Invariant Systems .........................................................................................96 5.3. Sliding Mode Dynamic Compensators ....................................................97 5.4. Ackermann’s Formula ............................................................................... 103 5.4.1. Simulation Results ......................................................................... 107 5.5. Output Feedback Sliding Mode Control ................................................ 111 5.6. Control of Time-Varying Systems ........................................................... 117 References ............................................................................................................. 121 Chapter 6 Sliding Mode Observers ............................................................ 123 6.1. Linear Asymptotic Observers .................................................................. 123 6.2. Observers for Linear Time-Invariant Systems.......................................125 6.3. Observers for Linear Time-Varying Systems ......................................... 126 6.3.1. Block-Observable Form ................................................................. 126 6.3.2. Observer Design ............................................................................ 129 6.3.3. Simulation Results ......................................................................... 131 6.3.4. Case 6.1: The System with Zero Disturbances ........................... 133 6.3.5. Case 6.2: The System with Disturbances .................................... 134 6.4. Observer for Linear Systems with Binary Output ................................ 135 6.4.1. Observer Design ............................................................................ 135 References ............................................................................................................ 138 Chapter 7 Integral Sliding Mode ................................................................. 139 7.1. Motivation ................................................................................................... 139 7.2. Problem Statement ..................................................................................... 140 7.3. Design Principles ....................................................................................... 141 7.4. Perturbation and Uncertainty Estimation .............................................. 143 7.5. Examples ..................................................................................................... 145 7.5.1. Linear Time-Invariant Systems .................................................... 146 7.5.2. Control of Robot Manipulators .................................................... 147 7.5.3. Pulse-Width Modulation for Electric Drives ............................. 150 7.5.4. Robust Current Control for Permanent-Magnet Synchronous Motors ..................................................................... 151 7.6. Summary ....................................................................................................... 157 References ............................................................................................................. 158 © 2009 by Taylor & Francis Group, LLC TAF-65602-08-1101-C000.indd viii TAF-65602-08-1101-C000.indd viii 3/31/09 7:44:09 PM 3/31/09 7:44:09 PM Downloaded by [Hong Kong University of Science & Technology] at 07:14 12 November 2013
Contents ix Chapter 8 The Chattering Problem ............................................................. 159 8.1. Problem Analysis ....................................................................................... 159 8.1.1. Example System: Model ................................................................ 160 8.1.2. Example System: Ideal Sliding Mode .......................................... 161 8.1.3. Example System: Causes of Chattering ...................................... 164 8.1.4. Describing Function Method for Chattering Analysis ............ 168 8.2. Boundary Layer Solution .......................................................................... 172 8.3. Observer-Based Solution .......................................................................... 175 8.4. Regular Form Solution .............................................................................. 179 8.5. Disturbance Rejection Solution................................................................ 183 8.6. State-Dependent Gain Method ................................................................ 187 8.7. Equivalent Control-Dependent Gain Method ....................................... 189 8.8. Multiphase Chattering Suppression ....................................................... 193 8.8.1. Problem Statement ......................................................................... 193 8.8.2. Design Principle ............................................................................. 196 8.9. Comparing the Different Solutions ........................................................ 201 References .............................................................................................................203 Chapter 9 Discrete-Time and Delay Systems ...........................................205 9.1. Introduction to Discrete-Time Systems ..................................................205 9.2. Discrete-Time Sliding Mode Concept .....................................................208 9.3. Linear Discrete-Time Systems with Known Parameters ..................... 212 9.4. Linear Discrete-Time Systems with Unknown Parameters................. 214 9.5. Introduction to Systems with Delays and Distributed Systems ......... 216 9.6. Linear Systems with Delays ..................................................................... 217 9.7. Distributed Systems................................................................................... 218 9.8. Summary .................................................................................................... 221 References .............................................................................................................222 Chapter 10 Electric Drives .............................................................................223 10.1. DC Motors ................................................................................................... 224 10.1.1. Introduction .................................................................................... 224 10.1.2. Model of the DC Motor ................................................................ 224 10.1.3. Current Control ..............................................................................225 10.1.4. Speed Control .................................................................................226 10.1.5. Integrated Structure for Speed Control ......................................227 10.1.6. Observer Design ............................................................................228 10.1.7. Speed Control with Reduced-Order Model ............................... 232 10.1.8. Observer Design for Sensorless Control .....................................236 10.1.8.1. Estimation of the Shaft Speed .......................................236 10.1.8.2. Estimation of Load Torque ............................................238 10.1.9. Discussion ....................................................................................... 239 10.2. Permanent-Magnet Synchronous Motors .............................................. 240 10.2.1. Introduction .................................................................................... 240 10.2.2. Modeling of Permanent-Magnet Synchronous Motors ............ 243 © 2009 by Taylor & Francis Group, LLC TAF-65602-08-1101-C000.indd ix TAF-65602-08-1101-C000.indd ix 3/31/09 7:44:09 PM 3/31/09 7:44:09 PM Downloaded by [Hong Kong University of Science & Technology] at 07:14 12 November 2013
分享到:
收藏