logo资料库

模型预测控制Model Predictive Control: Theory and Design.pdf

第1页 / 共723页
第2页 / 共723页
第3页 / 共723页
第4页 / 共723页
第5页 / 共723页
第6页 / 共723页
第7页 / 共723页
第8页 / 共723页
资料共723页,剩余部分请下载后查看
nd = p nd < p nd < p
Xf XN K∞ α(·) Xf XN XN K∞ Xf V(·) K∞ XN V(·) XN V(·) XN N(·) V XN V X XN VN Rn × RNm → R≥ X × UN UN(x) ⊂ UN x ∈ XN V N XN → R≥ N(·) X X V XN XN N(·) XN XN Xf N(x) ≤ α(|x|) x ∈ Xf K∞ α(·) V N(x) ≤ β(|x|) x ∈ XN K∞ β(·) V XN Xf ⊆ XN XN XN XN XN ⊂ Rn Xf ⊂ XN x+ = f (x) Xf ⊂ XN V Rn → R≥ K∞ α(·) α(·) ∀x ∈ XN ∀x ∈ Xf V(f (x)) − V(x) ≤ −α(|x|) ∀x ∈ XN V(x) ≥ α(|x|) V(x) ≤ α(|x|)
XN XN XN x+ = f (x) XN κN(·) XN x+ = f (x, κN(x)) XN x+ = f (x, κN(x)) κN(·) x ∈ XN XN− ⊆ XN XN− XN− ⊆ XN N(·) V Xj, j = , , . . . , N XN XN− x+ = f (x, κN(x)) Xj, j = , , . . . , N − x+ = f (x, κN(x)) j ∈ I≥ Vj(·) Zj x ∈ Xj Uj(x) (x) ∈ Uj(x) Pj(x) X = Xf x+ = f (x, u) u ∈ U j ∈ I≥ Xj Xj ⊇ Xj− ∈ Xj Xj Xj Xj− x+ = f (x, κj(x)) j ∈ I≥
U U U X Xf U Xf ⊆ X (y, u) ≥ α((y, u)) Vf (x) ≤ α(|x|) α(·) K∞ (y, u)a (y, u) ≥ c Vf (x) ≤ c |x|a y ∈ Rp, u ∈ Rm x ∈ Xf y ∈ Rp, u ∈ Rm x ∈ Xf c, c, a > x+ = f (x, u), y = h(x) XN x+ = f (x, κN(x))
x+ = f (x, u), y = h(x) XN x+ = f (x, κN(x)) x+ = Ax + Bu, y = Cx (y, u) = (/)(yQy + uRu) f (x, u) = Ax + Bu A ∈ Rn×n, B ∈ Rn×m X = Rn U = Rm Q > R > (A, C) Xf (A, B) XN XN (A, B) Vf (x) = xΠx Π (A, B) (A, B) Xf = Rn XN = Rn N ∈ I∞ Vf Vf (x) = xΠx Π N Vf (·) κN(x) = Kx K x+ = f (x, κN(x)) = (A + BK)x l(y, u) = (/)(yQy + uRu) Q > R > (A, C) (A, B)
x, x ∈ XN ∈ UN(x) ∈ UN(x) | − | ≤ σ (|x − x|) K σ (·) V N(·) i + wiαp V(up) i ∀i ∈ IM i υp up+ i = up V(up+) ≤ wiV(up i + αp i υp i , up−i) i∈IM i∈IM wi = wi > i ∈ IM i , up−i)} i = i{V(up wi wi i + αp i υp A x+ = f (x) KL β(·) x ∈ Rn φ(i x)A ≤ β(|x|A , i) ∀i ∈ I≥
f (·) f (·) x+ = f (x, κN(x)) κN(·) f (·) x+ = f (x)  f (x) = x x − |x| |x| ∈ [, ] |x| ∈ (, ) |x| ∈ [,∞) x() ∈ R |x()| ∈ [, ] |x(k)| ≤ (/)k |x()| |x()| ∈ (, ) |x()| ≥ |x()| = |x()| ∈ [,∞) |x()| = δ ≤ |x()| ≤ δ |x(k)| ≤ δ k KL β(·) x() ∈ R |x(k)| ≤ β(|x()| , k) ∀k ∈ I≥ |x()| x(k) k = f (·) V(·) X Rn V(x) ≤ α(|x|A) x ∈ Xf Xf ⊆ X A K∞ β(·) V(x) ≤ β(|x|A) x ∈ X V(·) X V(·) X
V(·) β(·) A Xf a > |x|A ≤ a x ∈ Xf i ∈ I≥ Si = {x | |x|A ≤ ia} {αi} αi = Si∩X V(x) + α(a) + i Si i X X αi i ∈ I≥ V(·) X {αi} i ∈ I≥ φi(·) φi(s) = (s − ia)/a s ∈ [ia, (i + )a] φi(ia) = φi((i + )a) = φ(·) [ia, (i + )a] β(·) (α/α(a))α(s) β(s) = αi+ + φi(s)(αi+ − αi+) s ∈ [, a] s ∈ [ia, (i + )a] i ∈ I≥ β() = β(s) ≥ α(s) s ∈ [, a] β(·) V(x) ≤ β(|x|A) x ∈ X K∞ β(·) V(x) ≤ β(|x|A) x ∈ X V(·) C ⊆ X K∞ β(·) V(x) ≤ β(x) x ∈ C V(·) x+ = f (x) A α(·) K∞ A V(φ(i + x)) ≤ V(φ(i x)) − α(φ(i x)A) ∀x ∈ Rn i ∈ I≥ α(|x|A) ≥ α ◦ α− (V(x)) ∀x ∈ Rn V(φ(i + x)) ≤ σ(V(φ(i x))) ∀x ∈ Rn i ∈ I≥ σ(·) = (·) − α ◦ α− (·)
分享到:
收藏