nd = p
nd < p
nd < p
Xf
XN
K∞ α(·) Xf
XN XN
K∞ Xf V(·)
K∞ XN V(·) XN
V(·) XN
N(·)
V
XN
V
X XN VN Rn × RNm →
R≥
X × UN UN(x) ⊂ UN x ∈ XN V
N XN → R≥
N(·)
X X V
XN
XN
N(·) XN
XN
Xf
N(x) ≤ α(|x|) x ∈ Xf
K∞ α(·) V
N(x) ≤ β(|x|) x ∈ XN
K∞ β(·) V
XN
Xf ⊆ XN XN
XN
XN
XN ⊂ Rn Xf ⊂ XN x+ = f (x)
Xf ⊂ XN
V Rn → R≥ K∞ α(·) α(·)
∀x ∈ XN
∀x ∈ Xf
V(f (x)) − V(x) ≤ −α(|x|) ∀x ∈ XN
V(x) ≥ α(|x|)
V(x) ≤ α(|x|)
XN
XN
XN x+ = f (x)
XN
κN(·)
XN x+ = f (x, κN(x))
XN x+ = f (x, κN(x))
κN(·) x ∈ XN XN− ⊆ XN
XN−
XN− ⊆ XN
N(·)
V
Xj, j = , , . . . , N XN
XN− x+ = f (x, κN(x))
Xj, j = , , . . . , N −
x+ = f (x, κN(x))
j ∈ I≥ Vj(·) Zj x ∈ Xj
Uj(x) (x) ∈ Uj(x) Pj(x)
X = Xf x+ = f (x, u) u ∈ U j ∈ I≥
Xj Xj ⊇ Xj− ∈ Xj Xj
Xj Xj− x+ = f (x, κj(x))
j ∈ I≥
U
U
U
X Xf
U Xf ⊆ X
(y, u) ≥ α((y, u))
Vf (x) ≤ α(|x|)
α(·) K∞
(y, u)a
(y, u) ≥ c
Vf (x) ≤ c |x|a
y ∈ Rp, u ∈ Rm
x ∈ Xf
y ∈ Rp, u ∈ Rm
x ∈ Xf
c, c, a >
x+ = f (x, u), y = h(x)
XN x+ = f (x, κN(x))
x+ = f (x, u), y = h(x)
XN x+ = f (x, κN(x))
x+ = Ax + Bu, y = Cx
(y, u) = (/)(yQy + uRu)
f (x, u) = Ax + Bu A ∈ Rn×n, B ∈ Rn×m
X = Rn U = Rm Q > R >
(A, C)
Xf (A, B)
XN XN
(A, B)
Vf (x) = xΠx Π
(A, B)
(A, B) Xf = Rn XN = Rn N ∈ I∞
Vf Vf (x) = xΠx Π
N
Vf (·)
κN(x) = Kx K
x+ = f (x, κN(x)) = (A + BK)x
l(y, u) = (/)(yQy +
uRu)
Q > R > (A, C) (A, B)
x, x ∈ XN ∈ UN(x) ∈ UN(x)
| − | ≤ σ (|x − x|) K σ (·)
V
N(·)
i + wiαp
V(up)
i ∀i ∈ IM
i υp
up+
i = up
V(up+) ≤
wiV(up
i + αp
i υp
i , up−i)
i∈IM
i∈IM wi = wi > i ∈ IM
i , up−i)}
i = i{V(up
wi wi
i + αp
i υp
A x+ = f (x) KL
β(·) x ∈ Rn
φ(i x)A ≤ β(|x|A , i)
∀i ∈ I≥
f (·)
f (·)
x+ = f (x, κN(x))
κN(·)
f (·)
x+ = f (x)
f (x) =
x
x
− |x|
|x| ∈ [, ]
|x| ∈ (, )
|x| ∈ [,∞)
x() ∈ R
|x()| ∈ [, ] |x(k)| ≤ (/)k |x()| |x()| ∈ (, ) |x()| ≥
|x()| = |x()| ∈ [,∞) |x()| =
δ ≤ |x()| ≤ δ |x(k)| ≤ δ k
KL β(·)
x() ∈ R
|x(k)| ≤ β(|x()| , k)
∀k ∈ I≥
|x()| x(k)
k =
f (·)
V(·) X Rn V(x) ≤ α(|x|A) x ∈ Xf
Xf ⊆ X A
K∞ β(·) V(x) ≤ β(|x|A)
x ∈ X V(·) X V(·)
X
V(·)
β(·) A Xf a > |x|A ≤ a
x ∈ Xf i ∈ I≥ Si = {x | |x|A ≤ ia}
{αi}
αi =
Si∩X
V(x) + α(a) + i
Si i X
X αi i ∈ I≥ V(·)
X {αi} i ∈ I≥
φi(·)
φi(s) = (s − ia)/a
s ∈ [ia, (i + )a]
φi(ia) = φi((i + )a) = φ(·) [ia, (i + )a]
β(·)
(α/α(a))α(s)
β(s) =
αi+ + φi(s)(αi+ − αi+)
s ∈ [, a]
s ∈ [ia, (i + )a]
i ∈ I≥
β() = β(s) ≥ α(s) s ∈ [, a] β(·)
V(x) ≤ β(|x|A) x ∈ X
K∞ β(·) V(x) ≤ β(|x|A)
x ∈ X
V(·)
C ⊆ X
K∞ β(·) V(x) ≤ β(x)
x ∈ C
V(·)
x+ = f (x) A α(·) K∞ A
V(φ(i + x)) ≤ V(φ(i x)) − α(φ(i x)A)
∀x ∈ Rn i ∈ I≥
α(|x|A) ≥ α ◦ α−
(V(x))
∀x ∈ Rn
V(φ(i + x)) ≤ σ(V(φ(i x)))
∀x ∈ Rn i ∈ I≥
σ(·) = (·) − α ◦ α−
(·)