CONTENTS
PREFACE
CHAPTER 1 INTRODUCTION TO THE HILBERT–HUANG TRANSFORM AND ITS RELATED MATHEMATICAL PROBLEMS
1.1. Introduction
1.2. The Hilbert–Huang transform
1.2.1. The empirical mode decomposition method (the sifting process)
1.2.2. The Hilbert spectral analysis
1.3. Recent developments
1.3.1. Normalized Hilbert transform
1.3.2. Confidence limit
1.3.3. Statistical significance of IMFs
1.4. Mathematical problems related to the HHT
1.4.1. Adaptive data-analysis methodology
1.4.2. Nonlinear system identification
1.4.3. The prediction problem for nonstationary processes (the end effects of EMD)
1.4.4. Spline problems (the best spline implementation for HHT, convergence and 2-D)
1.4.5. The optimization problem (the best IMF selection and uniqueness mode mixing)
1.4.6. Approximation problems (the Hilbert transform and quadrature)
1.4.7. Miscellaneous statistical questions concerning HHT
1.5. Conclusion
References
CHAPTER 2 ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND ITS MULTI-DIMENSIONAL EXTENSIONS
2.1. Introduction
2.2. The empirical mode decomposition
2.3. The ensemble empirical mode decomposition
2.4. The multi-dimensional ensemble empirical mode decomposition
2.5. Summary and discussions
Acknowledgments
References
CHAPTER 3 MULTIVARIATE EXTENSIONS OF EMPIRICAL MODE DECOMPOSITION
3.1. Introduction
3.2. Multivariate extensions of EMD
3.2.1. Complex extensions of EMD
3.2.1.1. Complex EMD (CEMD)
3.2.1.2. Rotation-invariant EMD
3.2.1.3. Bivariate EMD
3.2.1.4. Data-driven direction vectors in BEMD
3.2.2. Trivariate EMD
3.2.3. Multivariate EMD
3.3. Mode-alignment property of MEMD
3.4. Filter bank property of MEMD and noise-assisted MEMD
3.5. Applications
3.5.1. Speed estimation using Doppler radar data
3.5.2. Respiration study using NA-MEMD
3.5.3. Classification of motor imagery data
3.6. Discussion and conclusions
Referrence
CHAPTER 4 B-SPLINE BASED EMPIRICAL MODE DECOMPOSITION
4.1. Introduction
4.2. A B-spline algorithm for empirical mode decomposition
4.3. Some related mathematical results
4.4. Performance analysis of BS-EMD
4.5. Application examples
4.6. Conclusion and future research topics
Acknowledgements
References
CHAPTER 5 EMD EQUIVALENT FILTER BANKS, FROM INTERPRETATION TO APPLICATIONS
5.1. Introduction
5.2. A stochastic perspective in the frequency domain
5.2.1. Model and simulations
5.2.2. Equivalent transfer functions
5.3. A deterministic perspective in the time domain
5.3.1. Model and simulations
5.3.2. Equivalent impulse responses
5.4. Selected applications
5.4.1. EMD-based estimation of scaling exponents
5.4.2. EMD as a data-driven spectrum analyzer
5.4.3. Denoising and detrending with EMD
5.5. Concluding remarks
References
CHAPTER 6 HHT SIFTING AND FILTERING
6.1. Introduction
6.2. Objectives of HHT sifting
6.2.1. Restrictions on amplitude and phase functions
6.2.2. End-point analysis
6.3. Huang’s sifting algorithm
6.4. Incremental, real-time HHT sifting
6.4.1. Testing for iteration convergence
6.4.2. Time-warp analysis
6.4.3. Calculating warped filter characteristics
6.4.4. Separating amplitude and phase
6.5. Filtering in standard time
6.6. Case studies
6.6.1. Simple reference example
6.6.2. Amplitude modulated example
6.6.3. Frequency modulated example
6.6.4. Amplitude step example
6.6.5. Frequency shift example
6.7. Summary and conclusions
6.7.1. Summary of case study findings
6.7.2. Research directions
References
CHAPTER 7 STATISTICAL SIGNIFICANCE TEST OF INTRINSIC MODE FUNCTIONS
7.1. Introduction
7.2. Characteristics of Gaussian white noise in EMD
7.2.1. Numerical experiment
7.2.2. Mean periods of IMFs
7.2.3. The Fourier spectra of IMFs
7.2.4. Probability distributions of IMFs and their energy
7.3. Spread functions of mean energy density
7.4. Examples of a statistical significance test of noisy data
7.4.1. Testing of the IMFs of the NAOI
7.4.2. Testing of the IMFs of the SOI
7.4.3. Testing of the IMFs of the GASTA
7.4.4. A posteriori test
7.5. Summary and discussion
Acknowledgements
References
CHAPTER 8 THE TIME-DEPENDENT INTRINSIC CORRELATION
8.1. Introduction
8.2. Limitations of correlation coefficient analysis
8.3. TDIC based on EMD
8.3.1. TDIC computations
8.3.2. Interpretation of patterns in the TDIC plots
8.3.3. Time-dependent intrinsic cross-correlation
8.3.4. Time-dependent intrinsic auto-correlation
8.3.5. Alleviation to the limitations of correlation coefficient
8.4. Applications of TDIC for geophysical data
8.4.1. ENSO and IOD
8.4.2. Paleoclimate observations
8.5. Summary and conclusions
Acknowledgments
References
CHAPTER 9 THE APPLICATION OF HILBERT–HUANG TRANSFORMS TO METEOROLOGICAL DATASETS
9.1. Introduction
9.2. Procedure
9.3. Applications
9.3.1. Sea level heights
9.3.2. Solar radiation
9.3.3. Barographic observations
9.4. Conclusion
Acknowledgments
References
CHAPTER 10 EMPIRICAL MODE DECOMPOSITION AND CLIMATE VARIABILITY
10.1. Introduction
10.2. Data
10.3. Methodology
10.4. Statistical tests of confidence
10.5. Results and physical interpretations
10.5.1. Annual cycle
10.5.2. Quasi-Biennial Oscillation (QBO)
10.5.3. ENSO-like mode
10.5.4. Solar cycle signal in the stratosphere
10.5.5. Fifth mode
10.5.6. Trends
10.6. Conclusions
Acknowledgments
References
CHAPTER 11 EMD CORRECTION OF ORBITAL DRIFT ARTIFACTS IN SATELLITE DATA STREAM
11.1. Introduction
11.2. Processing of NDVI imagery
11.3. Empirical mode decomposition
11.4. Impact of orbital drift on NDVI and EMD-SZA filtering
11.5. Results and discussion
11.6. Extension to 8-km data
11.7. Integration of NOAA-16 data
11.8. Conclusions
References
CHAPTER 12 HHT ANALYSIS OF THE NONLINEAR AND NON-STATIONARY ANNUAL CYCLE OF DAILY SURFACE AIR TEMPERATURE DATA
12.1. Introduction
12.2. Analysis method and computational algorithms
12.3. Data
12.4. Time analysis
12.4.1. Examples of the TAC and the NAC
12.4.2. Temporal resolution of data
12.4.3. Robustness of the EMD method
12.4.3.1. EMD separation of a known signal in a synthetic dataset
12.4.3.2. Robustness with respect to data length
12.4.3.3. Robustness with respect to end conditions
12.5. Frequency analysis
12.5.1. Hilbert spectra of NAC
12.5.2. Variances of anomalies with respect to the NAC and TAC
12.5.3. Spectral power of the anomalies with respect to the NAC and TAC
12.6. Conclusions and discussion
Acknowledgements
References
CHAPTER 13 HILBERT SPECTRA OF NONLINEAR OCEAN WAVES
13.1. Introduction
13.2. The Hilbert–Huang spectral analysis
13.3. Spectrum of wind-generated waves
13.4. Statistical properties and group structure
13.5. Summary
Acknowledgements
References
CHAPTER 14 EMD AND INSTANTANEOUS PHASE DETECTION OF STRUCTURAL DAMAGE
14.1. Introduction to structural health monitoring
14.2. Instantaneous phase and EMD
14.2.1. Instantaneous phase
14.2.2. EMD and HHT
14.2.3. Extracting an instantaneous phase from measured data
14.3. Damage detection application
14.3.1. One-dimensional structures
14.3.2. Experimental validations
14.3.3. Instantaneous phase detection
14.4. Frame structure with multiple damage
14.4.1. Frame experiment
14.4.2. Detecting damage by using the HHT spectrum
14.4.3. Detecting damage by using instantaneous phase features
14.4.4. Auto-regressive modeling and prediction error
14.4.5. Chaotic-attractor-based prediction error
14.5. Summary and conclusions
References
CHAPTER 15 HHT-BASED BRIDGE STRUCTURAL HEALTH-MONITORING METHOD
15.1. Introduction
15.2. A review of the present state-of-the-art methods
15.2.1. Data-processing methods
15.2.2. Loading conditions
15.2.3. The transient load
15.3. The Hilbert Huang transform
15.4. Damage-detection criteria
15.5. Case study of damage detection
15.6. Conclusions
Acknowledgements
References
CHAPTER 16 APPLICATIONS OF HHT IN IMAGE ANALYSIS
16.1. Introduction
16.2. Overview
16.3. The analysis of digital slope images
16.3.1. The NASA laboratory
16.3.2. The digital camera and set-up
16.3.3. Acquiring experimental images
16.3.4. Using EMD/HHT analysis on images
16.3.5. The digital camera and set-up
16.3.5.1. Volume computations and isosurface visualization
16.3.5.2. Use of EMD/HHT in image decomposition
16.4. Summary
Acknowledgments
References
INDEX