2017 年吉林四平中考数学真题及答案
一、单项选择题(每小题 2 分,共 12 分)
1.(2 分)计算(﹣1)2 的正确结果是(
)
A.1
B.2
C.﹣1
D.﹣2
2.(2 分)如图是一个正六棱柱的茶叶盒,其俯视图为(
)
A.
B.
C.
D.
3.(2 分)下列计算正确的是(
)
A.a2+a3=a5
B.a2•a3=a6
C.(a2)3=a6 D.(ab)2=ab2
4.(2 分)不等式 x+1≥2 的解集在数轴上表示正确的是(
)
A.
B.
C.
D.
5.(2 分)如图,在△ABC 中,以点 B 为圆心,以 BA 长为半径画弧交边 BC 于点 D,连接 AD.若∠B=40°,
∠C=36°,则∠DAC 的度数是(
)
A.70° B.44° C.34° D.24°
6.(2 分)如图,直线 l 是⊙O 的切线,A 为切点,B 为直线 l 上一点,连接 OB 交⊙O 于点 C.若 AB=12,
OA=5,则 BC 的长为(
)
A.5
B.6
C.7
D.8
二、填空题(每小题 3 分,共 24 分)
7.(3 分)2016 年我国资助各类家庭困难学生超过 84 000 000 人次.将 84 000 000 这个数用科学记数法
表示为
.
8.(3 分)苹果原价是每千克 x 元,按 8 折优惠出售,该苹果现价是每千克
元(用含 x 的代数式表
示).
9.(3 分)分解因式:a2+4a+4=
.
10.(3 分)我们学过用直尺和三角尺画平行线的方法,如图所示,直线 a∥b 的根据是
.
11.(3 分)如图,在矩形 ABCD 中,AB=5,AD=3.矩形 ABCD 绕着点 A 逆时针旋转一定角度得到矩形 AB'C'D'.若
点 B 的对应点 B'落在边 CD 上,则 B'C 的长为
.
12.(3 分)如图,数学活动小组为了测量学校旗杆 AB 的高度,使用长为 2m 的竹竿 CD 作为测量工具.移
动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面 O 处重合,测得 OD=4m,BD=14m,则旗杆 AB 的高为
m.
13.(3 分)如图,分别以正五边形 ABCDE 的顶点 A,D 为圆心,以 AB 长为半径画 , .若 AB=1,则阴
影部分图形的周长为
(结果保留π).
14.(3 分)我们规定:当 k,b 为常数,k≠0,b≠0,k≠b 时,一次函数 y=kx+b 与 y=bx+k 互为交换函数.例
如:y=4x+3 的交换函数为 y=3x+4.一次函数 y=kx+2 与它的交换函数图象的交点横坐标为
.
三、解答题(每小题 5 分,共 20 分)
15.(5 分)某学生化简分式
+
出现了错误,解答过程如下:
原式=
+
(第一步)
=
=
(第二步)
.(第三步)
(1)该学生解答过程是从第
步开始出错的,其错误原因是
;
(2)请写出此题正确的解答过程.
16.(5 分)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累
计长度之和为 342km,隧道累计长度的 2 倍比桥梁累计长度多 36km.求隧道累计长度与桥梁累计长度.
17.(5 分)在一个不透明的盒子中装有三张卡片,分别标有数字 1,2,3,这些卡片除数字不同外其余均
相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表
的方法,求两次抽取的卡片上数字之和为奇数的概率.
18.(5 分)如图,点 E、F 在 BC 上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.
四、解答题(每小题 7 分,共 28 分)
19.(7 分)某商场甲、乙、丙三名业务员 5 个月的销售额(单位:万元)如下表:
月份
第 1 月
第 2 月
第 3 月
第 4 月
第 5 月
销售额
人员
甲
乙
7.2
5.8
9.6
9.7
9.6
9.8
7.8
5.8
9.3
9.9
丙
4
6.2
8.5
9.9
9.9
(1)根据上表中的数据,将下表补充完整:
统计值
平均数(万元)
中位数(万元)
众数(万元)
数值
人员
甲
乙
丙
8.2
7.7
9.3
8.5
9.6
5.8
(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.
20.(7 分)图①、图②、图③都是由边长为 1 的小等边三角形构成的网格,每个小等边三角形的顶点称为
格点.线段 AB 的端点在格点上.
(1)在图①、图 2 中,以 AB 为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)
(2)在图③中,以 AB 为边画一个平行四边形,且另外两个顶点在格点上.
21.(7 分)如图,一枚运载火箭从距雷达站 C 处 5km 的地面 O 处发射,当火箭到达点 A,B 时,在雷达站
C 处测得点 A,B 的仰角分别为 34°,45°,其中点 O,A,B 在同一条直线上.求 A,B 两点间的距离(结
果精确到 0.1km).
(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)
22.(7 分)如图,在平面直角坐标系中,直线 AB 与函数 y= (x>0)的图象交于点 A(m,2),B(2,n).过
点 A 作 AC 平行于 x 轴交 y 轴于点 C,在 y 轴负半轴上取一点 D,使 OD= OC,且△ACD 的面积是 6,连接
BC.
(1)求 m,k,n 的值;
(2)求△ABC 的面积.
五、解答题(每小题 8 分,共 16 分)
23.(8 分)如图①,BD 是矩形 ABCD 的对角线,∠ABD=30°,AD=1.将△BCD 沿射线 BD 方向平移到△B'C'D'
的位置,使 B'为 BD 中点,连接 AB',C'D,AD',BC',如图②.
(1)求证:四边形 AB'C'D 是菱形;
(2)四边形 ABC'D′的周长为
;
(3)将四边形 ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出
所有可能拼成的矩形周长.
24.(8 分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水
槽.水槽内水面的高度 y(cm)与注水时间 x(s)之间的函数图象如图②所示.
(1)正方体的棱长为
cm;
(2)求线段 AB 对应的函数解析式,并写出自变量 x 的取值范围;
(3)如果将正方体铁块取出,又经过 t(s)恰好将此水槽注满,直接写出 t 的值.
六、解答题(每小题 10 分,共 20 分)
25.(10 分)如图,在 Rt△ABC 中,∠ACB=90°,∠A=45°,AB=4cm.点 P 从点 A 出发,以 2cm/s 的速度
沿边 AB 向终点 B 运动.过点 P 作 PQ⊥AB 交折线 ACB 于点 Q,D 为 PQ 中点,以 DQ 为边向右侧作正方形 DEFQ.设
正方形 DEFQ 与△ABC 重叠部分图形的面积是 y(cm2),点 P 的运动时间为 x(s).
(1)当点 Q 在边 AC 上时,正方形 DEFQ 的边长为
cm(用含 x 的代数式表示);
(2)当点 P 不与点 B 重合时,求点 F 落在边 BC 上时 x 的值;
(3)当 0<x<2 时,求 y 关于 x 的函数解析式;
(4)直接写出边 BC 的中点落在正方形 DEFQ 内部时 x 的取值范围.
26.(10 分)《函数的图象与性质》拓展学习片段展示:
【问题】如图①,在平面直角坐标系中,抛物线 y=a(x﹣2)2﹣ 经过原点 O,与 x 轴的另一个交点为 A,
则 a=
.
【操作】将图①中抛物线在 x 轴下方的部分沿 x 轴折叠到 x 轴上方,将这部分图象与原抛物线剩余部分的
图象组成的新图象记为 G,如图②.直接写出图象 G 对应的函数解析式.
【探究】在图②中,过点 B(0,1)作直线 l 平行于 x 轴,与图象 G 的交点从左至右依次为点 C,D,E,F,
如图③.求图象 G 在直线 l 上方的部分对应的函数 y 随 x 增大而增大时 x 的取值范围.
【应用】P 是图③中图象 G 上一点,其横坐标为 m,连接 PD,PE.直接写出△PDE 的面积不小于 1 时 m 的
取值范围.
参考答案与试题解析
一、单项选择题(每小题 2 分,共 12 分)
1.(2 分)(2017•吉林)计算(﹣1)2 的正确结果是(
)
A.1
B.2
C.﹣1
D.﹣2
【分析】根据有理数乘方的定义计算即可.
【解答】解:原式=1.
故选 A.
【点评】本题考查有理数的乘方,记住乘方法则是解题的关键.
2.(2 分)(2017•吉林)如图是一个正六棱柱的茶叶盒,其俯视图为(
)
A.
B.
C.
D.
【分析】根据正六棱柱的俯视图为正六边形,即可得出结论.
【解答】解:正六棱柱的俯视图为正六边形.
故选 B.
【点评】本题考查了简单几何体的三视图,熟记正六棱柱的三视图是解题的关键.
3.(2 分)(2017•吉林)下列计算正确的是(
)
A.a2+a3=a5
B.a2•a3=a6
C.(a2)3=a6 D.(ab)2=ab2
【分析】根据整式的运算法则即可求出答案.
【解答】解:(A)a2 与 a3 不是同类项,故 A 错误;
(B)原式=a5,故 B 错误;
(D)原式=a2b2,故 D 错误;
故选(C)
【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.