29
10
2009
10
Systems Engineering | Theory & Practice
Vol.29, No.10
Oct., 2009
: 1000-6788(2009)10-0145-07
GM(1; N j; r )
!"#$
(
,
210016)
,
'()+*,)-.+/102345+/6
'(
9;:;<;=?>A@?BAC;D;E;F;G;E?HAI;J;K;L;M?NAO;P?QAR
H\T^]\_\`\a\b\cedAf;g\h?i;j^k;l?d
T\o\N\p^q\res
m\n
T\{^\\\
N^;?^
t
\\
F\G\¥eH\N^}\~\¦e§
\\\\ e¡^¢\£\¤
¨\©\ªe«^¬\Y
U\V GM(1; N j ,r )
; _\`\a\b
¢\£
\\\e
A
,
,
,
,
,
;
;
ze{^|\}\~\\\e
Z\l
®\¯\°
±\²\³\´\µ
C931
¶\·\¸\¹\º
.
H;TAU;V;@?BAC;W;X GM
T^u\vew^x\M\y\`eN
. \L\\
.
\\\\\\e^
Z\I\J\e\N^\
¥eH^}\~
Grey GM(1; N j ,r ) model and its particle swarm optimization algorithm
(College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
HUANG Ji
Abstract The multi-variables grey model is based on the classical grey theory, which mainly solves the
practical forecast problems of multi-input of variable, single variable or multi-variables output. For the
multivariable control input-output systems with time-varying delay, this paper proposes grey model GM
with time-varying delay, which separately produces the parameter estimate formula, the approximate time
corresponding formula and the derivative models.
In order to get the highest forecast precision by the
determined value, the article establishes optimized problems which take the mean error as the goal, and
uses the particle swarm optimization to seek optimum. The practice indicates that this model has a higher
precision.
Keywords grey GM(1; N j ,r ) model; parameter estimate; particle swarm optimization; science and
technology prediction
À;Ë\Ì
,
,
GM(1,N )
\Ä\Å\Æ\Ç\È\É\Ê
\
Ç\ß
ã\ä\å\Ø\ÙeÚ^æ\ç\Û\Ü\Ý
û\ü\Ç\þ\É\ÿ\Ä
û\ü\ý
â\ú
¾ GM(1,N )
ö
û\ü\þ\É\Ç
() +*,-.\Ü0/21\ê\Å\Æ
û\ü
?@ABCDE
\ú
Í\ÎeÏ^Ð\Å\Æ\Ñ\Ò\Ó\Ô\É\Ê\Õ\Ö\Ç
Ç\ß\à\á;
\è\é;ê\ë;Ç\Û\â;Ý
Â\Ã
¾ !"
û\ü\ÇFGH7IJ
ú
ß;Ç
KJL\Ô\Ý
GM(1,N )
GM(1,N )
GM(1,1)
[2],
û\ü\Ç4\ó5678
[5];
Ø\ÙeÚ^Û\Ü\Ý
ì\í\å\î\Ô\ï
\ú
#$\ú\Ô%&'
9:;<
Ç\à\áMN
[1] ,
[4];
,
,
,
,
,
,
À\×
Ç\ß
1
.
»½¼
¾\¿\À\Á\Â\Ã\¿
Ç\ß\à\á\Û\â\Ý
ê\ñ\Ç\ò\ó
ô\õ\ö\÷\ø\ù
É\Ý
ú\û\ü\Ç\à\á=>
OQPSRUT
VQWQXSY
eQfQgQh
GM(1,N )
: 2008-08-05
[3];
:
:
(2007GXQ4D172)
(1977{),
ZQ[Q\Q]Q^Q_Q`QaQbQcSd
iQj
,
,
mQnQoQpQqQr
,
sQtQ_Q`Qu
:
,
_Q`QvSw
]QxQyQz
, E-mail: whst1612@163.com.
%
&
7
8
S
Y
Z
[
Y
Z
t
Y
Y
Z
Þ
Þ
Þ
Þ
ð
¾
3
Þ
k
l
146
,
n
[7{8]
à\á
%\û\üB\Å\Æ\û\ü
¥¦
ê\
ô\õ\ö²³´
#$\ú
\ì\Å\\Ç\Ô\Ý
\å3.\Ü
Û\Ü\Ý
¡\Ç\å\Ô\ç%
:§¨©©\
ª«\ÝH5\ê
¬5®
[9{10]
x(0)(k) + az(1)(k ) = bkr;
GM(1,N ),
MGM(1,N )
{}|}~}z}}}}
'\û\ü
#$\û\ü\Ç
) ¾
K\Ý
¯5\ÇB
°\È5 ±§¨®
¤¶·
û\ü
Û\â\Ý
Ç¢< +£
GM(1,1j; r)
GM(1,N )
GM(1,N )
k + 2; 2 f0; 1; g; r 2 R
[6].
(
(
)
,
,
.
,
.
:
û\ü\Ç
û\ü\å\ç
¤
.
(1)
â\ú
, r
û\ü
.
29
a 2 (2; 2)
5Ë¢;ÇÃ
ËÔ
,
Ç4\ó
ßà
J\þ\É
ï\Ã
\û\ü\Ç
,
,
,
.
.
,
||GM(1,N j; r)
¸¹\\\Ç®ª«
K¬5ª«\ÝH'\Û\Ü\Ǻ\É
Í\Î\ú'Ä\ÉÅ\
Æ
ÇÏÈ;;
'Ö\û\ü
Bª«\ÝH
ýÃ\û\ü\Ç
ÇÀÁ«
ÃÌ
ÈÍÎ;Ô;Ý
ý5;Ó;é;Ç
â\ì¨\Ç'Ö\û;ü
À\Ë\Ì
ÈÍÎ
Ø\Å ±\ú\Ô\Ý
Ô\Ý
\\à\á\û\üåJLæçèÂéêë
áâãä
¤ GM(1,N )
Ï^Ð\û\ü
û\ü
Àñ
, ¾
'Ö\\\\ \Ǿ¿¬5\\ óôB\óô
õ÷ö÷ø÷ù÷ú÷ûü}ý
1 = (x(0)
x(0)
1 (1); x(0)
K\\\Ç1\ê%&
1 (2); ; x(0)
\\
\;Ç®
#\û
,
(i = 1; 2; ; N ); z(1)
1 (n))
x(0)
j
7ð
(j = 2; ; N )
x(1)
1
1
1
,
,
(j = 2; 3; ; N )
1-AGO
2 GM(1,N j ,r )
ã
Ç\ß
NXi=2
bix(1)
i
GM(1,N j ,r )
.
û\ü
,
0; N = 1
= 0; r = 0
, GM(1,N j ,r )
GM(1,1)
þÿ
û\ü\Ç
2
ìè
.
·
ì
,
GM(1,N j ,r )
û\ü\ÝK\Ç
dx(1)
1 (t)
dt
GM(1,1)
û;üKê
û\ü
NXi=2
,
GM(1,1)
GM(1,1j; r)
\û\ü
Å\Ƹ»
ÇÇÈ
Û;Ü;
;Û;â;Ç®¯ÐËKÑÒ
\û\ü×5
ÃÜ
ɸ»\û\üÊ
Ù\â\û\ü\Ç\þ\ÉÚÛ\ý
û\ü¼½\ú¾¿\\É
û\ü¬
À;Ë
û\ü
Ý4HÞ
îª
éìí;ß\Ç\à;áMN
û\ü#\ûá\é
GM(1,N j ,r )
GM(1,1j; r)
GM(1,N )
:Ó
,
,
,
,
,
.
, x(0)
,
j = (x(0)
\
j (1); x(0)
j (2), , x(0)
Û\â
. x(1)
x(0)
1
i
j (n))
x(0)
i
Û\ܪ
GM(1,N )
,
û;ü
GM(1,N j ,r )
.
%
r > 0;
= 0; r =
GM(1,N )
û\üK
1 (k) + az(1)
x(0)
1 (k ) =
(k )(k )r;
r > 0
(2)
û\üB
(3)
, ^ =
+ az(1)
1 (t ) =
bix(1)
i
(t )(t )r
,
.
K¾¿;É
, bi
K;É
, bix(1)
i
(k )
K
z(1)
z(1)
1 (2 )
1 (3 )
x(1)
2 (2 )(2 )r
x(1)
2 (3 )(3 )r
N (2 )(2 )r
N (3 )(3 )r
x(1)
x(1)
...
x(1)
2 (n )(n )r
N (n )(n )r
377775
GM(1,N j ,r )
[a; b2; ; bN ]T
, a
û\ü\ÇH
´ GM(1,N j ,r )
K\þ\É
"#
û;ü̵
þ!
1
.
266664
266664
,
B =
Y =
n = N + 1
n > N + 1
,
1)
2)
z(1)
1 (n ) x(1)
x(0)
1 (2)
x(0)
1 (3)
...
x(0)
1 (n)
P = B1Y; jBj 6= 0;
P = (BTB)1BTY ;
377775
P = [a; b2; ; bN ]T
Þ
K
ù
é
Ë
J
Þ
Þ
Þ
Ç
µ
ù
¶
µ
Þ
Ì
Õ
ù
Þ
Ã
Þ
¤
Æ
¾
Ê
ò
ù
â
þ
ÿ
K
É
Ê
K
Ç
K
K
ª
Ì
ª
K
ª
ª
10
3)
n < N + 1
,
<=?>@ABCDE
MNOP
:
&('
)(*(+(,(-
P = BT(BBT)1Y .
GM(1; N j; r )
.(/(0(1(2(3(4(5(6(7(8
147
.
k = 2; 3; ; n
x(0)
1 (k) + az(1)
1 (k ) =
bix(1)
i
(k )(k )r
GHIJKL
NXi=2
NXi=2
NXi=2
NXi=2
x(0)
1 (2) + az(1)
1 (2 ) =
bix(1)
i
x(0)
1 (3) + az(1)
1 (3 ) =
bix(1)
i
(2 )(2 )r
(3 )(3 )r
...
x(0)
1 (n) + az(1)
1 (n ) =
bix(1)
i
(n )(n )r
BP = Y
n < N + 1
,
B
STUV:
,
B
XUVYZS
B = DC
B
X\]^_`
B+
"ab
D = In1(
cd_`
),
;W
2
ef
GM(1,N j ,r ,x(0)):
GM(1,N j ,r )
B+ = C T(CC T)1(DTD)1DT
P = C T(CC T)1(DTD)1DTY
B = DC = In1C
B = C
P = BT(BBT)1Y
GM(1,N j ,r )
x(1)
hijk
x(0)
,
Ym#S
Ll
GM(1,N j ,r ,x(1))
x(0)
1 (k) =
x(0)
1 (k) =
NXi=2
NXi=2
<=onp
z(1)
1 (k)
bix(1)
i
bix(0)
i
(k )(k )r 0:5ax(1)
1 (k ) 0:5ax(1)
1 (k 1)
(k )(k )r 0:5ax(0)
1 (k ) 0:5ax(0)
1 (k 1) + x(0)
1 (k 1)
(4)
(5)
Xq]Wz(1)
1 (k ) = 0:5[x(1)
1 (k ) + x(1)
1 (k 1)]
GH
rs
GM(1,N j ,r ) M
x(0)
1 (k) + 0:5a[x(1)
1 (k ) + x(1)
1 (k 1)] =
bix(1)
i
(k )(k )r
NXi=2
x(0)
1 (k) =
(k )(k )r 0:5ax(1)
1 (k ) 0:5ax(1)
1 (k 1)
i
bix(1)
NXi=2
k = j 1; j M
bix(1)
i
tuvwxy
,
Ymz
NXi=2
x(0)
1 (j 1) =
(j 1)(j 1)r 0:5ax(1)
1 (j 1) 0:5ax(1)
1 (j 2)
$
%
9
:
;
F
Q
9
:
R
W
[
:
S
g
X
L
l
=
=
NXi=2
NXi=2
NXi=2
NXi=2
NXi=2
lq
bx(0)
=
2
148
x(0)
1 (j) =
{}|}~}}}}}
bix(1)
i
(j )(j )r 0:5ax(1)
1 (j ) 0:5ax(1)
1 (j 1)
bi[x(1)
i
(j 1) + x(0)
1 (j )](j )r
0:5a[x(1)
1 (j 1) + x(0)
1 (j ) + x(1)
1 (j 2) + x(0)
1 (j 1)]
bix(1)
i
bix(0)
i
bix(0)
i
(j 1)(j 1)r 0:5ax(1)
1 (j 1) 0:5ax(1)
1 (j 2)+
(j )(j )r 0:5ax(0)
1 (j ) 0:5ax(0)
1 (j 1)
(j )(j )r 0:5ax(0)
1 (j ) 0:5ax(0)
1 (j 1) + x(0)
1 (j 1)
, GM(1,N j ,r )
KLX:
(k )(k )r az(1)
1 (k )
1 (k) =
1
q
k 2.
bix(1)
i
bix(1)
i
NXi=2
NXi=2
= 1,
GM(1,N j; r ; x(1))
1 (k) x(0)
1 (k)
KLXS
=
(k )(k )r 0:5ax(1)
1 (k ) 0:5ax(1)
1 (k 1)
b
i
=
bix(1)
bx(0)
NXi=2
s
KLXZh
IX¥
nXk=3
[bx(0)
NXi=2
nXk=3
min Q(r) =
KL
=
f
:
(k 1)(k 1)r 0:5ax(1)
1 (k 2) 0:5ax(1)
1 (k 1) x(0)
1 (k)
sN
S¡ X¢£¤¥
KLZ
,
GM(1,N j; r )
KL§¨
1 (k) x(0)
1 (k)]2
bix(1)
i
(k 1)(k 1)r 0:5ax(1)
1 (k 2) 0:5ax(1)
1 (k 1) x(0)
1 (k)g2
29
(6)
(7)
(8)
(9)
s:t
[a; b2; ; bN ]T = (BTB)1BTY
GM(1,N j; r ; x(0))
,
,
¦«
min Q(r) =
KL
1 (k) x(0)
1 (k)]2
;X¥
KLS
r 0
nXk=3
[bx(0)
nXk=3( NXi=2
=
s:t
[a; b2; ; bN ]T = (BTB)1BTY
r 0
(8)
lKL
(9),
¬®¯°
x±
²³
.
Z
GM(1,N j ,r )
¦«KL
3
´¶µ
PSO
ÃSÄ
Mà
ÈÉÞß
ÆÇ²³
CÅ
\áX
bix(0)
i
(k 1)(k 1)r 0:5ax(0)
1 (k 2) + (1 0:5a)x(0)
1 (k 1) x(0)
1 (k))2
·¶¸¶¹¶º¶»}¼}½¾}¿}ÀÁ}Â
²Í
[11].
WÈÉ¥Ê
©Ì
,
,
cÏÎÑÐÒÓÔÕ
ÖRרÙÚXÛ
,
[Ü
$
w
S
y
x
;
S
¦
©
ª
¥
Ë
S
Ý
t
10
:
GM(1; N j; r )
&('
¦¡ äåæ
tð
,
Gñ
(Pi).
Mà
XZ
.
PSO ²³âã
Äêîï
Ãêëóï
Mà
,
,
Sóï
)(*(+(,(-
Pçè
,
.(/(0(1(2(3(4(5(6(7(8
. np
éê°
Äêóïú
x
Vi (t + 1) = wVi (t) + c1r1 (Pi Xi (t)) + c2r2 (Pg Xi (t))
Äêóïúû°
¥Xóï
éêêëZìíÄê°
êóïôõö÷ùø
W°
npò
±y
IJ
XdlÓÔ
Xêëóï
õö÷
éê°
(Pg).
,
,
:
¡ ä
êóï
,
éê°
±y
¡üýþ
Xÿ
Äê
Xi (t + 1) = Xi (t) + Vi (t + 1)
t
xt
Vi (t)
i
c2
x±
GM(1,N j ,r )
ê°
, c1Î
KL°
åæ
, np
, Pg Sóï
1) t
hTß
¦«éê°
q
a$óïlêëóï
2)
3)
(
, Xi (t)
i
:
:XÓÔ
ÓÖR
²³
Xë
,
ZKL
ê°
c1 = c2 = 2; r1Î
²O
, C
«ýþúÄX
!"#HKL
), Å
1
;
,
t
xt
r2 ú
±
(8), np
:Xd
t
[0,1]
K
¡ ä
6)
,
2)
;
/;
4) ©%
5)
6)
U&Ø
(10)
1kóï
(11)
s2
Äq(Ô)*U& +,-
0
õö°
¦XZ
XÓÔld
3k+,
!"
,
.
,
, Pi S
çè
;
i
ê°
. w
Xêëó
ú¤
, Ì
Xîï
éê°
5)
;
149
(10)
(11)
.
;
,
4
4656768696:<;>=>?<@>A>:C>D¹>E>FH
IJKL
,
XMHNOkú
,
XïRqXNZ[\]X1kXYX^Q_
Màmn
dijX
, Ì
IJ
cd
Jk
OlU
Ol
Ìxy
[ö
Jk
[ö
1 2001{2006
QPRqX
,
,
,
úÄêSTX¢£¤U
IJ
`RõØú
Mmqr
Jk
MHNOkWaQ"¤
Xís
Ý{|
OlzØ
&Xop
opN}
bcd[ö
©ª«¬
³´µ¶
¥¦§¨
©ª±²
£¤
¢
op
¡¢
1.2166
1.1022
1.1250
1.2227
1.2794
®¯°
,
.
úÄêVLX
bcd
yuvtw
W
ê1HXY
tef
Igh
. np
^_
1.
ÓÔ~Q
R&D
³´µ
1.3911
©ª«¬
³·¸¶
1.2547
0.2166
0.1022
0.1250
0.2227
0.2794
0.3911
0.2547
¿
1.1940
1.2098
0.1940
0.2098
IJKL
ÄqXФ
ìkg
ÝQÂ
IJKL
, QQÑQÒQÓ
, ÈÉ
¹º»¼½¾
¹º
½¾
1 y
g
Jk
OlX
ÊËbcd
ÄqXQÐ
vt
Ã
OlMHOksÙÚWÛÜX
TâãYä
IJðñ
Nîï
[ö
ZKL
, rs
SýþúÄX
x±
. Ý
²³
G÷
£¤úûl
KL
S1H
òæ
GM(1,N j ,r )
GM(1, N )
oô°
¤ó
r = 0:236
ú9
,
.
uÀ
DE
op
ÎÄOQÅÆQÇÐH
!QhQÕQÖ
.
MHØQPQs
,
,
.
Ol
ÝÂ
2006 x
ÓÔúQ[«
, ª
bcd[ö
Oï
uÎ
Jk
ÎÄ}
ËMHØPX}
uQÔ
.¤
QÃ
ïX
IQJKQL
§¨
2001 x
QÃ
XMHQÌÔÍQ
XQaQ"¤
ÓÔ Ø"}
¦
[åæ
OlOïS1k
20, ð
G-S
ÃN
ÏÎ
G-N
0.9898 104, Ì
hb°
ÃN
abbcçè
X
Jk
50
2.
S
, ð
ÐÒ
S
.
:
,
ÓÔ
ÝQÂQéê
~
KLX
P = [a; b2; b3; b4]T = (2:4051; 6:5431; 7:4590; 229:6480)T
.
úÁ
ÿX
2QÈQÉQÃ
ÖQ
zØQOk
Ëbcd[ö
,
.
NOkXQ}
Q×
CDE
tbcd[
ÓÔX
, vt
uQu
Jk
îá
Îíç
²
¤¬
\
Dõ
3.
è
©ö
3 ª
[0.4, 0.9]
1.
:øk
¬Éù
ÛÝÞÉXYR1HN1kWa"¤XßàQU
ëQìk
x±
GM(1,N j ,r )
IQJKQL
KL
,
ÝÂ
°
$
%
Ä
Z
x
x
h
s
O
y
x
x
à
r
x
y
°
x
w
ø
y
S
A
S
A
A
x
ï
X
Ì
©
I
°
x
C
±
x
²
x
'
à
T
A
.
Å
T
A
.
w
l
x
A
.
É
N
Å
O
y
b
t
b
²
n
h
s
à
t
ë
ö
X
}
n
À
ï
}
n
t
:
n
n
ª
.
Ï
%
C
ª
t
|
Ï
X
}
n
}
n
[
C
Å
S
Î
|
|
Ö
È
¥
³
p
©
x
-
t
£
ñ
Ì
²
Ë
q
ð
%
:
²
÷
%
m
Ì
²
÷
%
150
2
{}|}~}}}}}
ýþÿ
2002
2001
(2001{2006
)
2003
2004
2005
29
(
)
:
2006
©ª«¬³·¸¶
©ª«¬³
´µ
¥¦§¨©ª±²
ª
42.60
38.09
2.07
48.09
41.55
2.16
50.33
51.95
3.37
63.30
62.04
3.57
71.31
77.02
3.72
82.63
73.47
5.24
428.61
497.35
572.23
641.00
837.02
1110.69
1
)*
1
2
3
4
5
6
3
2
!"#
$%&'(
GM(1,N )
GM(1,N j ,r )
+,)*
428.61
497.35
572.23
641.00
837.02
-./
0
34
409.915
489.7727
558.7492
5678
4.36%
1.52%
2.36%
34
428.61
12
5678
0
425.2065
14.50%
723.0480
26.35%
731.6074
14.14%
1034.7555
56.54%
805.6954
976.0206
16.60%
34
428.61
484.11
577.02
667.13
837.27
1110.69
1088.6698
1328.2828
19.59%
1097.86
3.47%
1.98%
12
5678
0
2.66%
0.83%
4.07%
0.03%
1.15%
¹º
5678
9:
4.86%
0.8765
26.72%
0.6154
1.74%
0.9556
3 y
X÷
g
ìk
ï=A=B=Cò=D=A=B=@=E=F=G=H=I=J
a=b
, GM(1,N )
, GM(1,N j ,r )
,
.
K=L
KLXâã÷
L=M=NPORQ=S=T=U=V=W
,
,
àm
GM(1,N )
Ô[
98
>=?=c=d=e=f=g=h=i=j=kml=nmo=pmqmr=@msmt=\
GM(1,N j ,r )
56.54%,
K=L=u=v=q=r=w=x
.
, ª=<
>=?=X=Y=Z=[=\P]R^=>=?
,
.
û=>=?=@âã
_=`
|=@
=Y=Z=[=\P]R^=>=?=
y=z={
2004
>=?==dPORQ=@=S=
,
.
=
5
==e=f==s=t=\=@
x=~===I=J
J=====q=r=w==
=======@===>=?
===
\=X=°=±=¤=²
Ä=Å=Æ
Ô=Õ=Ö=×
à=á
=@
\=ê=Ý
³=´=µ=¶=·=¬=P¸RY=¹=Kmº
==?=Ç==È=É=@=Ê=º=Ë=S=²=Ì=N
@=u=v=ØP¸
==?=â=ã=ä
ë=ì=Y=ZP]R^=_=`=o=í=Y===@=o=í
Ù=Ú=ÛPO
=å
GM(1,1 j ,r )
GM(1,N )
=d
,
,
.
.
,
, GM(1,N j ,r )
||GM(1,N j ,r )
,
GM(1,N )
GM(1,1)
==>=?
,
==?=
=?=@
=¢=£=_=e=f==Y=¤=¥=¦=§=¨=©=ª=«=¬==@=®=¯
=?=X
,
.
m»
I=t=Ã
=?=@=S=¡
m¤m¥=@m¼=½mJ=¾mXm¿=ÀmE=¬
Ä=Í GM(1,N j ,r )
j=k=Ü=Ý=@=l=n
=?
u=v
, ×
.
===
=Á====?=@=I=S=Â
=?=Î=U=g=h=Ï=Ð=j=k=V=Ñ=Ò=Ó==k
{=ß
, Å
£=_=e=f=¬=PæRç=è=K=p=Ø=±=@
u=v==d=´mÓ=@=ÞmG
,
d=©=ª=«=\=C=s=tm\=K=pm@=¬m
ü
¾
%
h
s
%
'
;
s
u
K
}
C
Ã
Õ
»
»
é
Á
10
:
ðñ
òóôõö
GM(1; N j; r )
÷øùúûüýþÿ
151
[1]
[2]
[3]
[4]
[5]
[6]
The Basis of Grey Technology and Its Application[M]
Beijing: Science Press, 2005
[M]
:
, 2002.
,
Xiao X P, Song Z M, Li F
Deng J L. The Basis of Grey Theory[M]
,
ò%ùú&'
ò
#$
!"
./012
3ô45òó÷ø
,-
.
,
.
Wuhan: HUST Press, 2002.
[M].
:
, 2005.
()
GM(1,N )
%
[J].
*
+
Zhang L T, Luo Y X. Multi-factored grey GM(1, N ) model of experimentation data processing and its applica-
tion[J]. Journal of Machine Design, 2003(3): 23{25.
6789
ù&'
,
.
<="
:;
Ye Z, Chen K M. Integrated forecasting of GM(1, 1) and GM(1, N ) based on self-correlation theory[J]. J of
University of Shanghai for Science and Technology, 2002(1): 17{20.
>@?AB
3
HI
JK
DEFG
GM(1,1)
GM(1,N )
[J].
, 2002(1): 17{20.
, 2003(3): 23{25.
.
,
OP
A new method of set up GM(1, N ) forecasting model[J] System Sciences and Comprehensive Studies
RSTUVWEXY
, 1997(4): 17{22.
GM(1, N )
LMN
He M X
in Agriculture, 1997(4): 17{22.
FG÷ø3Q
[J].
]^$
Z[\
Qiu W J, Liu S F
28(11): 1679{1681.
. GM(1,N )
[J].
, 2002, 28(11): 1679{1681.
Dispersed structure solve of model GM(1,N )[J]. Systems Engineering and Electronics, 2002,
÷ø3_`ÿabc
TUJdV@e
ü%
[7] Wu W Y, Chen S P. A prediction method using the grey model GMC(1, N ) combined with the grey relational
analysis: A case study on internet access population forecast[J]. Applied Mathematics and Computation, 2005,
169: 198{217.
[8] Tien T L. The indirect measurement of tensile strength of material by the grey prediction model GMC(1, N )[J].
Measurement Science and Technology, 2005, 16: 1322{1328.
[9] Deng J L. A novel grey model GM(1,1j , ): Generalizing GM(1,1)[J]. Journal of Grey System, 2001, 13(1): 1{8.
[10] Deng J L. Solution of grey dierential equation for GM(1,1j , ) in matrix train[J]. Journal of Grey System,
2002, 14(1): 105{110.
[11]
.
[M]. 2006.
f%g
Wuhan Science & Technology Bureau. Wuhan Statistics Yearbook on Science & Technology[M]. 2006.
fU9hi
î
ï
C