Comparison of existing PV models and
possible integration under EU grid 
specifications
Ioannis-Thomas K. Theologitis
   Degree project in
Electric Power Systems
Second Level
Stockholm, Sweden 2011
XR-EE-ES 2011:011
 
 
 
 
 
 
 
 
 
 
Comparison of existing PV models and 
possible integration under EU grid 
specifications 
 
 
Ioannis-Thomas K. Theologitis 
 
 
Master of Science Thesis 
KTH School of Electrical Engineering 
Division of Electrical Power Systems EPS-2011 
SE-100 44 STOCKHOLM 
 
COMPARISON  OF  EXISTING  PV  MODELS  AND 
POSSIBLE 
INTEGRATION  UNDER  EU  GRID 
SPECIFICATIONS 
 
 
 
 
 
Ioannis-Thomas Theologitis 
Royal Institute of Technology (KTH), Sweden 
 
 
 
 
©2011 
School of Electrical Engineering 
Kungliga Tekniska Högskolan 
SE-100 44 Stockholm 
Sweden 
 
 
 
 
 
The  author  is  officially  enrolled  to  the  Sustainable  Energy  Engineering  Master  Program 
(SEE)  and  belongs  to  the  School  of  Industrial  Engineering  and  Management  and  the 
Department of Energy Technology. 
 
 
The  picture  of  the  front  cover  is  taken  from  the  second  edition  of  the  book  “Planning  & 
Installing Photovoltaic Systems – A guide for installers, architects and engineers”, published 
by  Earthscan  and  copyrighted  by  The  German  Energy  Society  (Deutsche  Gesellshaft  für 
Sonnenenergie (DGS LV Berlin BRB) in 2008.  ISBN-13: 978-1-84407-442-6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“Αποσκότισόν με”  
-Διογένης- 
“Take me out of the dark” 
-Diogenes- 
 
 
It was the answer to Great Alexander, when he stood in front of Diogenes and asked him what favour 
he needs. Diogenes, as a cynic philosopher, answered this phrase to Alexander implying that he was 
blocking  the  sun  with  his  body.  Cynics  believed  that  the  happiness  is  hidden  in simple  things  as the 
energy and warmth of the sun and not in material goods.     
 
 
 
 
 
MSc Thesis Project                                                                                                        Abstract 
KTH, June 2011 
 
Abstract  
 
 
 
This master thesis investigates the capabilities of a generic grid-connected photovoltaic (PV) 
model  that  was  developed  by  DIgSILENT  and  is  part  of  the  library  of  the  new  version  of 
PowerFactory v.14.1. The model has a nominal rated peak power of 0.5 MVA and a designed 
power factor cosφ=0.95. A static generator component, which includes the PV array, the DC 
bus with the capacitor, the inverter and the control frame, is used to model the PV system. 
The PV array is considered to operate at the MPP and the generator with cosφ=1.    
 
The thesis begins with a short review of the current status of the PV sector, focusing mostly 
on the types of PV systems and the necessary components that are used in grid-connected 
systems.  Since  the  PV  inverter  is  the  key  component,  special  reference  is  made  to  the 
different  technologies  applied  and  to  the  multifaceted  role  that  inverters  should  play 
nowadays  supporting  the  grid’s  stability.  Technical  restrictions  and  requirements  are 
presented  highlighting  primarily  the  German  Grid  Code  for  the  MV  network,  which  is  the 
benchmark for the analysis of the role and behaviour of the PV model in question. Germany 
is  regarded  a  very  good  example  to  base  the  study  on  due  to  its  leading  position  and 
experience in the renewable area and its thorough grid specifications.      
 
The main part of the report includes a detailed description of the structure of the generic 
model, presenting the operating procedure of its components as well as model assumptions 
and simplifications. Various simulations in variable solar irradiation, frequency and voltage 
conditions are performed in order to conclude in its capabilities. The static voltage support 
is investigated under cloud effect situation where the changes in active power output of the 
PV array can influence the voltage stability of the grid at the PCC. The active power control 
is examined by forcing the grid frequency to deviate beyond specified limits and observing 
the  active  power  output  results.  At  last,  the  dynamic  voltage  support  capability  (LVRT)  is 
examined  by  simulating  four  different  short  circuit  events  creating  four  different  voltage 
dips. The ability of the PV inverter to stay connected and to provide reactive current when 
necessary is seen. The external grid component is designed to represent a strong grid. 
 
The  results  showed  that  the  model  is  capable  for  active  power  reduction  and  LVRT 
behaviour. However, the absence of reactive power control makes it inapplicable for static 
voltage  support.  Thus,  a  PI  controller  is  implemented  in  order  to  supply  constant  reactive 
power in steady state operation and support the grid stability.   
 
At  last  two  different  interconnections  were  built  using  a  slightly  modified  version  of  the 
same  generic  model  with  a  rated  power  1  MVA.  The  control  scheme  remained  the  same. 
Both  configurations  were  examined  statically  and  dynamically  and  their  results  were 
compared. Small differences were found in terms of reactive power consumption/injection 
at the PCC.  
 
Keywords: Grid-connected Photovoltaic, PV inverter, Grid codes for PV, PV model, DIgSILENT  
 
iv 
MSc Thesis Project                                                                                          Sammanfatning 
KTH, June 2011 
 
Sammanfatning  
 
 
 
Det  här  examensarbetet  undersöker  förmågan  av  en  generisk  nätanslutna  solcell  (PV) 
modell som utvecklades av DIgSILENT och det är en del av biblioteket av den nya versionen 
av PowerFactory v.14.1. Modellen har en nominell beräknat maximal effekt på 0.5 MVA och 
en  utformad  effektfaktor  på  cosφ=0.95.  En  stillastående  generator  beståndsdel,  som 
innehåller  PV  uppställningen,  DC  bussen  med  kondensatorn,  strömväxlaren  och  kontroll 
ramen,  som  användes  för  att  utforma  PV  systemet.  PV  uppställningen  förväntas  att 
användas vid MPP-en och generatorn med cosφ=1. 
 
Examensarbetet inleder med en kort genomgång av det nuvarande läget av PV sektorn, som 
fokus  för  det  mesta  på  PV  system  sorter  och  de  viktiga  beståndsdelarna  som  användas  i 
nätanslutna system. Eftersom PV strömväxlaren är den viktigaste beståndsdelen, är särskild 
hänvisning  görs  till  de  olika  tillämpade  tekniker  och  den  mångfacetterade  roll  som 
växelriktare  bör  spela  nuförtiden  stödja  nätets  stabilitet.  Tekniska  begränsningar  och  krav 
presenteras för att belysa främst på den tyska GC för MV nätet, vilket är utgångspunkten för 
analysen  av  den  roll  och  beteende  av  PV  modellen  i  fråga.  Tyskland  anses  ett  mycket  bra 
exempel att basera studien på grund av sin ledande ställning och erfarenhet inom förnybar 
området och dess grundliga specifikationer nätet. 
 
Den  huvuddelen  av  rapporten  innehåller  en  detaljerad  beskrivning  av  strukturen  för  den 
generiska  modellen,  som  presenterar  fungerande  förfarandet  av  dess  komponenter  samt 
modellantaganden  och  förenklingar.  Olika  simuleringar  i  varierande  solstrålning,  frekvens 
och  spänning  villkor  utförs  i  syfte  att  ingå  i  sin  förmåga.  Den  statiska  spänningen 
understödet  undersökas  under  moln  effekt  situation  där  förändringar  i  aktiv  uteffekt  PV 
uppställningen  kan  påverka  spänningsstabilitet  i  rutnätet  på  den  PCC.  Den  aktiva  effekten 
kontroll undersöks genom att tvinga nätfrekvens att avvika utöver angivna gränsvärden och 
observera det aktiva resultatet uteffekt. Äntligen är den dynamiska spänning stöd kapacitet 
(LVRT) undersöks med hjälp av simulerad fyra olika kortslutning händelser skapa fyra olika 
spänningsfall.  Förmågan  hos  PV  strömväxlaren  att  hålla  kontakten  och  ge  reaktiva 
strömmen vid behov ses. Det externa komponent i nätet utformats för att representera en 
stark rutnät. 
 
Resultaten visas att modellen har kapacitet för aktiv effekt minskning och LVRT beteende. 
Men  gör  det  saknas  styrning  av  reaktiv  effekt  inte  tillämpas  under  statisk  spänning  stöd. 
Därför är en PI-regulator som genomförs för att leverera konstant reaktiv effekt i konstant 
drift och support för stabila nät.  
 
Äntligen två olika sammankopplingar byggdes med en något modifierad version av samma 
generiska modell med en nominell effekt 1 MVA. Kontrollschemat förblevs densamma. Båda 
konfigurationerna  undersöktes  statiskt  och  dynamiskt  och  resultaten  jämfördes.  Små 
skillnader fanns i form av reaktiv effekt förbrukning / insprutning i PCC. 
 
Nyckelord: Nätanslutna solcell, PV strömväxlare , Nät  koder för PV, PV modell, DIgSILENT 
 
v 
last 
  
friendly  and  highly  professional  environment.       
MSc Thesis Project                                                                                   Acknowledgements 
KTH, June 2011 
 
five  months,  ensuring  a 
Acknowledgements 
 
 
 
At first I wish to thank all the people, who, in whichever way, assisted me to complete this 
interesting project for my master thesis and made this period an important benchmark for 
my  future  professional  expectations.  From  Energynautics  GmbH1,  Dr  Thomas  Ackermann, 
who gave me the opportunity to complete the thesis in his company, Dr Eckehard Tröster, 
for his patience with all my questions, his valuable advices and insight that gave direction to 
my work, Rena Kuwahata, who was the initial contact with the company and the person that 
facilitated  my  work  and  life  in  the  new  environment,  Dr  Nis  Martensen  and  Stanislav 
Cherevatskiy, who shared their experiences in the field whenever those were asked for and 
in general I wish to thank all the rest of the personnel, who were part of my everyday life 
the 
 
Furthermore, I would like to thank Prof. Lennart Söder for the fruitful pre-presentation and 
his  valid  comments  and  of  course  Giannis  Tolikas  for  undertaking  the  translation  of  the 
abstract to Swedish. Since it is likely that I forget some people that offered their helped for 
the completion of this project, I feel obliged to thank them as well. 
 
Special  thanks  should  be  paid to  Panagiotis  Giagkalos  and  Kyriakos  Liotsios,  who  were  my 
classmates, colleagues, but most of all my friends during the last two years of this master. It 
is  important  to  realize  that  anytime  you  can  find  people  that  you  can  count  on.  May  this 
friendship lasts and don’t leave time and distance to wear it, rather strengthen it through 
personal or professional common experiences. 
 
To  Angela  Maria  Castaño  Garcia,  for  this  beautiful  journey  that  still  goes  on.  Her  support 
during  this  time  was  more  that  I  could  ask  for.  As  far  as  the  thesis  concerned,  her 
contribution and effort to the final format of the report was significant. 
 
At  last,  to  my  beloved  family,  my  parents  Konstantinos  and  Efterpi,  and  my  brother 
Charalampos, who deserve my eternal gratitude for all that have offered me. Their constant 
support  in  every  aspect  is  scarcely  reflected  on  these  few  sentences  here.  However,  any 
success  in  my  life  so  far  is  mostly  charged  to  them  and  consequently  any  success  in  the 
future will have their signature as well.   
 
Such moments, I feel the need to give space and mention all the people that left something 
valuable to me. Old friends from Greece that never forget, new friends from different parts 
of the world, people I met for short period, all of them are the people that with one way or 
another  made  this  time  worth  living  it  again.  You  are  my  personal  ark.  Thank  you  all  and 
wish you the best.    
                                                 
1 http://www.energynautics.com/  
 
 
vi 
MSc Thesis Project                                                                                       Table of Contents 
KTH, June 2011 
 
Table of Contents 
 
 
 
ABSTRACT........................................................................................................................ . IV 
SAMMANFATNING ........................................................................................................... V 
ACKNOWLEDGEMENTS .................................................................................................... VI 
TABLE OF CONTENTS ...................................................................................................... VII 
LIST OF FIGURES .............................................................................................................. IX 
LIST OF TABLES ............................................................................................................... XII 
NOMENCLATURE ........................................................................................................... XIII 
1 
INTRODUCTION ......................................................................................................... 1 
1.1  THE DRIVING FORCE ....................................................................................................... 2 
1.2  OVERVIEW OF THE THESIS REPORT ................................................................................ 4 
1.3  OBJECTIVES .................................................................................................................... 5 
1.4  LIMITATIONS .................................................................................................................. 6 
2 
BACKGROUND .......................................................................................................... 8 
2.1.1 
2.1  PV SYSTEMS – OVERVIEW .............................................................................................. 8 
I-V CHARACTERISTICS ............................................................................................. 9 
2.2  GRID-CONNECTED PV SYSTEMS ................................................................................... 11 
2.3  PV INVERTER ................................................................................................................ 12 
2.3.1  WHAT IS AVAILABLE – CURRENT STATUS ............................................................ 13 
2.3.2 
ISSUES WHEN CHOOSING INVERTER ................................................................... 16 
2.3.3  ADDITIONAL REQUIREMENTS – ANCILLARY FUNCTIONS .................................... 18 
2.4  LOW VOLTAGE RIDE THROUGH (LVRT) REQUIREMENT ............................................... 18 
2.4.1  REACTIVE POWER AND ITS IMPORTANCE ........................................................... 19 
2.5  GRID REQUIREMENTS FOR PV SYSTEMS ...................................................................... 19 
2.5.1  THE NEW GERMAN GRID CODE ........................................................................... 20 
2.5.2  THE SITUATION IN THE REST OF EUROPE ............................................................ 25 
2.5.3  FURTHER INTERNATIONAL AND EUROPEAN REQUIREMENTS FOR PV ............... 25 
3  METHODOLOGY ...................................................................................................... 27 
3.1  DESCRIPTION OF THE TOOLS ........................................................................................ 27 
3.2  WAYS FOR SIMULATING PV WITH POWERFACTORY .................................................... 27 
4  MODEL DESCRIPTION .............................................................................................. 31 
4.1  THE BASE MODEL ......................................................................................................... 31 
4.2  THE PV GENERATOR ..................................................................................................... 33 
4.2.1  THE CONTROL FRAME OF THE PV GENERATOR ................................................... 36 
INVESTIGATION UNDER GERMAN GCS ......................................................................... 48 
4.3.1  STEADY STATE CONDITION .................................................................................. 48 
4.3 
 
vii