logo资料库

《自适应滤波器原理》中文第四版课后题答案.pdf

第1页 / 共338页
第2页 / 共338页
第3页 / 共338页
第4页 / 共338页
第5页 / 共338页
第6页 / 共338页
第7页 / 共338页
第8页 / 共338页
资料共338页,剩余部分请下载后查看
ch1
ch2
ch3
ch4
ch5
ch6
ch7
ch8
ch9
ch10
ch11
ch12
ch13
ch14
ch15
ch16
ch17
CHAPTER 1 1.1 Let ru k( ) ry k( ) [ E u n( )u* n k–( ) ] = [ E y n( )y* n k–( ) ] = We are given that y n( ) = a+( u n ) u n – a–( ) Hence, substituting Eq. (3) into (2), and then using Eq. (1), we get (1) (2) (3) ry k( ) = E u n a+( [ ( ) u n a–( – ) ) u* n ( k–+( a ) ( u* n a– – k– ) ) ] = 2ru k( ) – ( ru 2a ) k+ ( – ru 2a– k+ ) 1.2 We know that the correlation matrix R is Hermitian; that is RH R= Given that the inverse matrix R-1 exists, we may write R 1– RH I= where I is the identity matrix. Taking the Hermitian transpose of both sides: RR H– I= Hence, R H– R 1– = That is, the inverse matrix R-1 is Hermitian. 1.3 For the case of a two-by-two matrix, we may Ru = Rs Rν+ 1
= = r11 r12 r21 r22 + σ2 0 0 σ2 σ2+ r11 r21 r12 σ2+ r22 For Ru to be nonsingular, we require ( det Ru ) = ( r11 σ2+ ) r22 ( σ2+ ) – r12r21 0> With r12 = r21 for real data, this condition reduces to ( r11 σ2+ ) r22 ( σ2+ ) – r12r21 0> Since this is quadratic in larity of Ru: σ2 , we may impose the following condition on σ2 for nonsingu- σ2 > 1 ( --- r11 2 r22+ )    1 – 4∆   --------------------------------------  )2 1– ( r11 r r22+ where ∆ r = r11r22 2– r12 1.4 We are given R = 1 1 1 1 This matrix is positive definite because aT Ra = [ a1,a2 ] 1 1 1 1 = 2 a1 + 2a1a2 + a1 a2 2 a2 2
( = a1 a2+ )2 0> for all nonzero values of a1 and a2 (Positive definiteness is stronger than nonnegative definiteness.) But the matrix R is singular because det R( ) = 1( )2 – 1( )2 = 0 Hence, it is possible for a matrix to be positive definite and yet it can be singular. 1.5 (a) RM+1 = r 0( ) r rH RM Let 1– RM+1 = a b bH C where a, b and C are to be determined. Multiplying (1) by (2): IM+1 = r 0( ) r rH RM a b bH C where IM+1 is the identity matrix. Therefore, r 0( )a + rHb 1= ra RMb + 0= rbH RMC + IM= r 0( )bH rHC+ 0T= From Eq. (4): 3 (1) (2) (3) (4) (5) (6)
b –= 1– ra RM Hence, from (3) and (7): a = 1 ------------------------------------ 1– r rHRM r 0( ) – Correspondingly, b –= 1– r RM ------------------------------------ 1– r rHRM r 0( ) – From (5): C = 1– RM – 1– rbH RM = 1– RM + 1– rrHRM 1– RM ------------------------------------ 1– r rHRM r 0( ) – As a check, the results of Eqs. (9) and (10) should satisfy Eq. (6). (7) (8) (9) (10) r 0( )bH rHC+ = – 1– r 0( )rHRM ------------------------------------ 1– r rHRM r 0( ) – + 1– rHRM + 1– 1– rrHRM rHRM ------------------------------------- 1– r rHRM r 0( ) – 0T= We have thus shown that 1– RM+1 = = 0 0 0 0 0T 1– RM 0T 1– RM + a 1 1– r RM 1– rHRM – 1– rrHRM RM 1– + a 1 1– r RM – [ 1 – 1– rHRM ] 4
where the scalar a is defined by Eq. (8): (b) RM+1 = RM rBT rB* r 0( ) Let 1– RM+1 = D eH e f where D, e and f are to be determined. Multiplying (11) by (12): IM+1 = RM rBT rB* r 0( ) D eH e f Therefore RMD rB*eH + I= RMe + rB* f 0= rBT e r 0( ) f + 1= rBT D r 0( )eH + 0T= From (14): e = 1– rB* f – RM Hence, from (15) and (17): f = --------------------------------------------- 1– rB* r 0( ) 1 rBT RM – Correspondingly, 5 (11) (12) (13) (14) (15) (16) (17) (18)
e –= 1– rB* RM rBT RM – --------------------------------------------- 1– rB* r 0( ) From (13): D = 1– RM – 1– rB*eH RM = 1– RM + 1– rB*rBT RM 1– RM --------------------------------------------- 1– rB* r 0( ) – rBT RM As a check, the results of Eqs. (19) and (20) must satisfy Eq. (16). Thus (19) (20) rBT D r 0( )eH + = 1– rBT RM + 1– rB*rBT RM 1– rBT RM ------------------------------------------------ 1– rB* rBT RM r 0( ) – – 0T= We have thus shown that 1– r 0( )rBT RM rBT RM – --------------------------------------------- 1– rB* r 0( ) 1– RM+1 = 1– RM 0T 0 0 + f 1– rB*rBT RM RM – rBT RM 1– 1– – 1– rB* RM 1 = 1– RM 0T 0 0 + f 1– rB* R– M 1 [ – rBT RM 1– ] 1 where the scalar f is defined by Eq. (18). 1.6 (a) We express the difference equation describing the first-order AR process u(n) as u n( ) = v n( ) w1u n 1–( + ) where w1 = -a1. Solving this equation by repeated substitution, we get u n( ) = v n( ) w1v n 1–( + ) w1u n + 2–( ) 6
…= = v n( ) w1v n 1–( + ) w1 + 2v n 2–( ) … w1 + + n-1v 1( ) (1) Here we have used the initial condition u 0( ) 0= or equivalently u 1( ) v 1( ) = Taking the expected value of both sides of Eq. (1) and using [ E v n( ) ] µ= for all n, we get the geometric series [ E u n( ) ] = µ w1 + µ w1 + 2µ … w1 + n-1µ + =        n–   µ 1 w1   ---------------   1 w1– µn, , 1≠ w1 w1 1=        This result shows that if AR process u(n) is not stationary. If, however, condition: , then E[u(n)] is a function of time n. Accordingly, the the AR parameter satisfies the µ 0≠ 1< or a1 1< w1 then [ E n( ) ] → µ --------------- as n 1 w1– ∞→ Under this condition, we say that the AR process is asymptotically stationary to order one. (b) When the white noise process v(n) has zero mean, the AR process u(n) will likewise have zero mean. Then 7
var v n( ) [ ] = σ 2 v var u n( ) [ ] = E u2 n( ) [ ]. Substituting Eq. (1) into (2), and recognizing that for the white noise process [ E v n( )v k( ) ] =      σ 2 v 0, n n k= k≠ we get the geometric series (2) (3) var u n( ) [ ] = σ 2 1 w1 ( 2 w1 + + v 4 … w1 + + 2n-2 ) =          σ   2n 2 1 w1 –   ------------------   v 2–   1 w1 , σ 2n, v 1≠ w1 w1 1= When |a1| < 1 or |w1| < 1, then var u n( ) [ ] ≈ 2 σ v --------------- 2– 1 w1 = 2 σ v -------------- 2– 1 a1 for large n (c) The autocorrelation function of the AR process u(n) equals E[u(n)u(n-k)]. Substituting Eq. (1) into this formula, and using Eq. (3), we get [ E u n( )u n k–( ) ] = σ 2 w1 ( k w1 + v k+2 … w1 + + k+2n-2 ) =          σ 2w1 v   2n k 1 w1 –   ------------------   2–   1 w1 , 1≠ w1 σ 2n, v w1 1= 8
分享到:
收藏