Polarization
Encoding
Decoding
Construction
Performance
Polar Coding Tutorial
Erdal Arıkan
Electrical-Electronics Engineering Department
Bilkent University
Ankara, Turkey
Jan. 15, 2015
Simons Institute
UC Berkeley
Polarization
Encoding
Decoding
Construction
Performance
The channel
Let W : X → Y be a binary-input discrete memoryless channel
X
W
Y
◮ input alphabet: X = {0, 1},
◮ output alphabet: Y,
◮ transition probabilities:
W (y |x),
x ∈ X , y ∈ Y
Polarization
Encoding
Decoding
Construction
Performance
The channel
Let W : X → Y be a binary-input discrete memoryless channel
X
W
Y
◮ input alphabet: X = {0, 1},
◮ output alphabet: Y,
◮ transition probabilities:
W (y |x),
x ∈ X , y ∈ Y
Polarization
Encoding
Decoding
Construction
Performance
The channel
Let W : X → Y be a binary-input discrete memoryless channel
X
W
Y
◮ input alphabet: X = {0, 1},
◮ output alphabet: Y,
◮ transition probabilities:
W (y |x),
x ∈ X , y ∈ Y
Polarization
Encoding
Decoding
Construction
Performance
The channel
Let W : X → Y be a binary-input discrete memoryless channel
X
W
Y
◮ input alphabet: X = {0, 1},
◮ output alphabet: Y,
◮ transition probabilities:
W (y |x),
x ∈ X , y ∈ Y
Polarization
Encoding
Decoding
Construction
Performance
Symmetry assumption
Assume that the channel has “input-output symmetry.”
Polarization
Encoding
Decoding
Construction
Performance
Symmetry assumption
Assume that the channel has “input-output symmetry.”
Examples:
BSC(ǫ)
1 − ǫ
1 − ǫ
0
1
ǫ
ǫ
0
1
Polarization
Encoding
Decoding
Construction
Performance
Symmetry assumption
Assume that the channel has “input-output symmetry.”
Examples:
BSC(ǫ)
1 − ǫ
1 − ǫ
0
1
ǫ
ǫ
0
1
0
1
BEC(ǫ)
1 − ǫ
ǫ
ǫ
1 − ǫ
0
?
1