¯<˘£o(
ø
2019c7
1 ~^^=
R(X, θ) =
R(Y, θ) =
0
0 cos(θ) − sin(θ)
cos(θ)
0
sin(θ)
0
1
cos(θ)
cos(θ) − sin(θ)
cos(θ)
sin(θ)
0
0
1
− sin(θ) 0 cos(θ)
sin(θ)
0
0
0
R(Z, θ) =
kxkxversθ+cθ
0
kxkyversθ − kzsθ kxkzversθ + kysθ
kykzversθ − kxsθ
kykxversθ + kzsθ
kykyversθ+cθ
kzkxversθ − kysθ kzkyversθ + kxsθ
kzkzversθ+cθ
0
1
R(K, θ) =
“¥versθ = 1 − cos(θ), sθ = sin(θ), cθ = cos(θ), K = (kx, ky, kz)T
2 gIgC
BIXØuAIXgCXe
A
BT =
gIk–eEC’X
A
BR APBO
0
1
A
CT =A
B T B
C T
1
(1)
(2)
(3)
(4)
(5)
(6)
liang-j14@tsinghua.org.cn
3 IC
gCECƒ^SC§ƒ{˘"/ˇgC:ICC
AP =A
B T P B
Av =A
B T vB
(7)
(8)
:ICC«O·14'0§:I14'1.
'fi†7?L:¶K^=θ^=Cˇ“R(K, θ)§y3–/ˇøgCˇ“
ƒ7?L:P (px, py, pz)¶K^=θgCˇ“§øgCˇ“
R(K, θ) −R(K, θ)P + P
A
BT = T rans(P )R(K, θ)T rans(−P ) =
0
1
(9)
3 IC
dugIC–?1E§ˇd§ØuXGØIX5‘§⁄kIX
C’X§U?¿IXmC’X"øC’X~k^§3¯:Œ˘L§
¥§|^IC–ØN·/ƒ¯:"3˜IX¥’u’!C…ŒL“§/ˇø
…ŒL“–?1"$˜"y3b‰kIX§˜IX§Ψ0$˜IXΨd"ø
IX3—'·›"
3.1 ؉IX$˜
3ø«„e§zgC·Øu˜IX§’X7Y¶^=θ§øp¡Y¶
·˜IXY¶"øAT#gC“3EC“?1ƒ§·‘§
l˜IXCICAT3m>§3>"·CE,·0
nT "ø¿
X§"IX¥‰IAT3Cm?1ƒ§ø·§3˜IX¥
L«"=
0P = (n−1
n T . . .1
2 T ·0
1 T ) ·n P =0
n T ·n P
(10)
3.2 Ø$˜IX$˜
«„·§ø«„ezgC·Øu#IX(·$˜IX)§
’X7Y¶^=θ§øp¡Y¶·$˜IXY¶§2·˜IXY¶"øAT
#gC“3EC“m?1ƒ§·‘§l˜IXCICAT
3>§3m>"dC·0
nT "ø¿X§"IX¥‰IAT
3Cm?1ƒ§ø·§3˜IX¥L«"=
0P = (0
1T ·1
2 T . . .n−1
n
T ) ·n P =0
n T ·n P
(11)
2
liang-j14@tsinghua.org.cn
3 IC
3.3 “IX$˜
k¡«˜„§–#IC·Øu˜IX§ATr#IC
“3¶XJ#IC·Øu$˜IX(gCIX)§ATr#I
C“3m"3XIC“ºƒ¥–3Øu‰IX$˜C“Øu
$˜IX$˜C“§5¿§{^S="y3/ˇmatlab5?1y"b‰$˜IX
¥k:(1,1,1)§k4ƒ7Ψ0Z¶=− π
§24§7Ψ0Y¶=arcsin( 1√
)"d–
0.8165
0 0.5774 0
0
1
0
0
−0.5774 0 0.8165 0
1
0
0
0
0.7071
0.7071 0 0
−0.7071 0.7071 0 0
1 0
0
0
0
0
0 1
0P =
0P =
4
3
1
1
1
1
=
1.7321
0
0
1
1
1
1
1
=
1.7321
0
0
1
(12)
(13)
(14)
w,ø(J·("y3–$˜IXº›#LªøCL§"KdL§lI›
)§¥K¶·Ψ0Y¶3Ψd¥L“"u·
¶27ΨdK¶=arcsin( 1√
3
m'§k7ΨdZ¶=− π
–
4
0.7071
0.7071 0 0
−0.7071 0.7071 0 0
1 0
0
0
0
0
0 1
0.9082 −0.0917 0.4082 0
−0.0917
0.4082 0
−0.4082 −0.4082 0.8165 0
1
0.9082
0
0
0
XJƒ§‹uy«„e·"ˇLmatlabyUuy§3
ª«„egC“2E#IC“§ˆø#IC“·–«“¥=
«ogC“E§#ogC“·"?–§•’u“
IX$˜·("
3.4 _IC
fiICA
BT §XJƒAØuBL«KIƒA
BT _=
A
BRT ·A PBO
BRT −A
0
1
AT =A
B
B T −1 =
3.5 .RPY
3.5.1 RPY
RPY·£ªE˝3¥˚1^«{"E1¤Z¶§K7Z¶^=(α)¡
E˜(Roll)¶r7Y¶^=(β)¡:(Pitch)¶rYX¶§7X¶^=(γ) ¡
=(Yaw)"ø«L«{‰k7˜IXX¶^=§27˜IXY¶^=§27˜IXZ¶^
=§¢S·«7‰IX$˜“"u·k
A
BRXY Z(γ, β, α) = R(ZA, α)R(YA, β)R(XA, γ)
(15)
3
liang-j14@tsinghua.org.cn
cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ
cβsγ
cβcγ
cos(β) =
r2
11 + r2
21
=
r11
r21
r31
r12
r22
r32
r13
r23
r33
ƒ)ª“§–RPY^==’X
XJcos(β) = 0§@ok
β = arctan(
−r31r2
11 + r2
21
), α = arctan(
r21
r11
), γ = arctan(
r32
r33
)
XJβ = π
2
§@ok
XJβ = − π
2
§@ok
3.5.2 Z-Y-X.
β =
π
2
, α = 0, γ = arctan(
r12
r22
)
β = − π
2
, α = 0, γ = − arctan(
r12
r22
)
3 IC
(16)
(17)
(18)
(19)
(20)
ZYX.˜k7$˜IXZ¶=α§,7$˜IXY¶=β§7$˜IXX¶
=γ"ø¢S·«7$˜IX$˜IC§
A
BRXY Z(γ, β, α) = R(ZB, α)R(YB, β)R(XB, γ)
(21)
ø(J«{·§ƒ{§·Ø(J)
”"
3.5.3 Z-Y-Z.
ø«{7$˜IX?1$˜"k7$˜IXZ¶=α§27$˜IXY¶=β§q7
$˜IXZ¶=γ"u·
A
BRZY Z(α, β, γ) = R(ZB, α)R(YB, β)R(ZB, γ)
cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ
sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ
cβ
−sβcγ
sβsγ
=
r11
r21
r31
r12
r22
r32
r13
r23
r33
(22)
(23)
(24)
(25)
(26)
r2
XJsin(β) = 0§@ok
β = arctan(
XJβ = 0§@ok
XJβ = π§@ok
31 + r2
32
r33
), α = arctan(
r23
r13
), γ = arctan(− r32
r31
)
β = 0, α = 0, γ = arctan(− r12
r11
)
β = π, α = 0, γ = arctan(− r12
r11
)
4
liang-j14@tsinghua.org.cn
4 ¯<$˜5y
4 ¯<$˜5y
4.1 DHºŒ
º\dºŒ5L«·º\ai§L«’!i^=¶’!i+1^=¶m
l¶,·º\αi§L«’!i^=¶=’!i+1^=¶)Y"^’!¶º
X^œ{§'OØAº\iº\i+1"ø^œ{mldi§L«º\¶ø^œ{
mYθi§L«’!"øºŒ·’!ºŒ"3D˜§S.5‰
a0 = an = 0, α0 = αn = 0
(27)
XJ’!i·^=’!§@oθi·’!C§di‰C§‰di = 0"XJ’!i·£˜’!§@odi
·’!C§θi‰C§‰θi = 0"
d⁄ª§zº\d4ºŒ⁄£ª§¥£ªº\§,£ªº\º\º
’X"Øu^=’!§θi’!C§ƒ3‰C§¡º\ºŒ¶Øu£˜’!§di’!C§
ƒ3‰C§¡º\ºŒ"ø«£ª¯$˜’X{¡DH{§’ºŒDHºŒ"
4.2 º\C
˜kƺ\IX§/ˇº\IXDHºŒº\CL“"º\IXX¶
œ{§i-1i¶º\IXZ¶’!¶§g(DH{¥ƒb)¶º
\IXY ¶dmˆIX(‰"3ø«„e
i−1
i T = Rot(X, αi−1)T rans(X, ai−1)Rot(Z, θi)T rans(Z, di)
cθi
sθicαi−1
sθisαi−1
0
−sθi
cθicαi−1 −sαi−1 −disαi−1
dicαi−1
cθisαi−1
cαi−1
ai−1
0
0
0
1
i−1
i T =
4.3 ¯<$˜˘§
(28)
(29)
(30)
d’!C‰´§XJ^–$˜IXº“5ƒIXmgIC§
K–ØN·/¯:"’u’!C$˜˘§"=
0
nT =0
1 T 1
2 T . . .n−1
n
T =
0
nR 0Pno
0
1
ø$˜˘§ºm’!m§ƒ3m–=z’!m§Or
<¯pl—5"
5
liang-j14@tsinghua.org.cn
5 '$˜’
5 '$˜’
fiA!BIXIC§–9,'$˜3A¥L“§ƒT'$˜3B¥L“"
'$˜C’X3¯<'!•'!˜˘'¥k›^"P'£˜'=˜
¥'O
-
S(P ) =
KØu?¿IXA!B§'$˜¥dC
d = [dx, dy, dz]T , δ = [δx, δy, δz]T
0
pz
−py
−pz
0
px
py
−px
0
Bd
Bd
Bδ
=
A
B
=
Bδ
BRT −A
0
AR −B
0
BRT S(APBO)
BRT
A
ARS(APBO)
B
AR
Aδ
Ad
Ad
Aδ
|^’–m"$˜C’!m"C’XXe
[υ, ω]T = J(q) ˙q = J(q)[ ˙q1, ˙q2, . . . . ˙qn]T
J(q) =
∂Px
∂θ1
∂Py
∂θ1
∂Pz
∂θ1
∂ωx
∂θ1
∂ωy
∂θ1
∂ωz
∂θ1
∂Px
∂θ2
∂Py
∂θ2
∂Pz
∂θ2
∂ωx
∂θ2
∂ωy
∂θ2
∂ωz
∂θ2
. . .
. . .
. . .
. . .
. . .
. . .
∂Px
∂θn
∂Py
∂θn
∂Pz
∂θn
∂ωx
∂θn
∂ωy
∂θn
∂ωz
∂θn
(31)
(32)
(33)
(34)
(35)
(36)
’k,«ƒ“"-n, o, α, P 'Oi
nT 1,2,3,4o"XJ’!i^=’!§
K
JLi = [−nxPy + nyPx,−oxPy + oyPx,−αxPy + αyPx, nz, oz, αz]T
XJ’!i£˜’!§K
JLi = [nz, oz, αz0, 0, 0]T
(37)
(38)
6