logo资料库

741运算放大器-详解spice.pdf

第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
资料共11页,剩余部分请下载后查看
Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) Page 220 - 1 LECTURE 220 – AC ANALYSIS OF THE 741 OP AMP (READING: GHLM – 462-472) Objective The objective of this presentation is to: 1.) Identify the devices, circuits, and stages in the 741 operational amplifier 2.) Perform a small-signal analysis 3.) Compare hand calculations of small-signal analyses with PSpice simulations Outline • Small-signal analysis • Frequency Compensation of 741 • PSpice analysis techniques and results • Summary ECE 6412 - Analog Integrated Circuit Design - II Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) © P.E. Allen - 2002 Page 220 - 2 741 OPERATIONAL AMPLIFIER Circuit Q12 Q9 Q8 + Q1 Q2 - VCC Q13A Q13B R5 39kΩ Q3 Q11 Q10 Q5 VCC Q7 Q4 Q6 R4 5kΩ R1 1kΩ R3 50kΩ R2 1kΩ Q14 vout R6 27Ω R7 27Ω Q19 Q15 Q18 R10 40kΩ Q23B Q23A Q21 Cc VCC Q16 Q17 R8 100Ω Q22 R9 50kΩ VEE Q20 Q24 50kΩ Fig. 210-01 ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002
Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) Page 220 - 3 Simplified Schematic of the 741 Op Amp with Idealized Biasing VCC = 15V 550µA Cc VCC Q16 Q9 Q8 + Q1 Q3 19µA Q5 Q2 - VCC Q7 Q4 Q6 R1 1kΩ R3 50kΩ R2 1kΩ R9 50kΩ VEE = -15V ECE 6412 - Analog Integrated Circuit Design - II Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) 180µA Q14 vout R6 27Ω R7 27Ω Q19 Q18 R10 40kΩ Q23 Q20 Q17 R8 100Ω Fig. 210-05 © P.E. Allen - 2002 Page 220 - 4 Input Stage vid 2 SMALL-SIGNAL ANALYSIS OF THE 741 OP AMP vid 2 + Q1 Q3 ic2 Q5 Q2 - Q4 ic4 iout ic6 Q6 Q7 R1 1kΩ R3 50kΩ R2 1kΩ + vid - Rid Gmvid Ro1 Fig. 220-01 ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002
Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) Page 220 - 5 Small-Signal Analysis of the Input Stage - Continued + Q1 - Q2 vid 2 Q3 ic3 Q4 ic4 Fig. 220-02 0.5vid = v1+v3 Start with, KCL at the emitters gives, vid 2 vid 2 + v1 - rπ1 gm1v1 gm3v3 + v3 - rπ3   gm1v1 + gπ1v1 = gm3v3 + gπ3v3 ⇒ gm1v1   1+ 1 βo1 = gm3v3     1+ 1 βo3           ∴ 0.5vid = -v3   Assuming that gm1 = gm3 (|IC1| = |IC3|) and βo1, βo3>>1, then gm3(1+1/βo3) gm1(1+1/βo1) +1     v3 = -vid/4 and ic3 = -gm3vid/4 and ∴ iout = -ic4 + ic3 = -gm3vid/2 = -gm1vid/2 ic4 = +gm4vid/4 (symmetry) gm1 2 = 9.5µA 1 Gm1 = -iout/vid = ⇒ Small-Signal Analysis of the Input Stage - Continued ECE 6412 - Analog Integrated Circuit Design - II 2(25.9mV) = 5.4kΩ Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) The input resistance can be written as   Rid = 2 rπ1 + (βN+1)rπ3    βP+1 Calculating the small-signal model parameters, Gm1 = 183.4µS © P.E. Allen - 2002 Page 220 - 6 IC1 Vt = 365µS, rπ3 = βPVt IC3 = 137kΩ, gm3 = IC3 Vt = 365µS rπ1 = βNVt IC1 = 684kΩ, gm1 = (βN+1)rπ3      ∴ Rid = 2 rπ1 + where βN ≈ 250 βP+1 and βP ≈ 50 = 2.72MΩ ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002
Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) Page 220 - 7 Calculation of the Input Stage Output Resistance + Q1 Q3 Q7 Q5 Q2 - Q4 ix Q6 vx R1 1kΩ R3 50kΩ R2 1kΩ 1 gm2 R2 1kΩ Q4 ix Q6 vx Fig. 220-03 ro4 = = 5.26MΩ VAP IC4 VAN IC6 = 13.7MΩ ro6 = Ro1 = ro4T||ro6T = 6.8MΩ   ro4T = ro4   gm4   gm2   1+ = 10.53MΩ ro6T = ro6(1+gm2R2) = 18.7MΩ ECE 6412 - Analog Integrated Circuit Design - II Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) Two-Port Equivalent Network for the Input Stage © P.E. Allen - 2002 Page 220 - 8 + vid - Rid 2.7MΩ vid 5.4kΩ Ro1 6.8MΩ Fig. 220-04 ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002
Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) Page 220 - 9 Small-Signal Equivalent Model for the Second Stage Q13B vout Ri2 Ri2 Q16 Q17 R8 100Ω Req1 R9 50kΩ Output Resistance: Q16 R9 50kΩ Req1 + vi2 - Ri2 Gm2vi2 Ro2 Fig. 220-05 rπ17 = βNVt IC17 = 11.8kΩ Req1 = rπ17 + (βN + 1)R8 =36.9kΩ rπ16 = βNVt IC16 = 394kΩ Ri2 = rπ16 + (β N +1)(R9||Req1)= 5.72MΩ ∴ The first-stage load is RLoad1 = Ro1||Ri2 = 3.1MΩ Av1 = Gm1RLoad1= 565 ⇒ 55dB ECE 6412 - Analog Integrated Circuit Design - II Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) © P.E. Allen - 2002 Page 220 - 10 Small-Signal Equivalent Model for the Second Stage - Continued Transconductance: gm17 Gm2 = 1+gm17R8   Ro2 = ro13B||   ro17 1+     = 6.79mS gm17R8   gm17R8   β0 1 + 1 Gm2 = 147Ω ≈ ro13B||[ro17(1+gm17R8)] if β0 >> gm17R8     [Recall that the output resistance of a BJT cascoding a resistor RE is ≈ ro(1+gmRE)] ro13B = VAP/IC13B = 50V/550µA = 90.9kΩ ro17 = VAN/IC17 =130V/550µA = 236.4kΩ ro17T = ro17(1+gm17R8) = 732.3kΩ Ro2 = ro13B||ro17T = 80.9kΩ + vi2 - 5.72MΩ vi2 147Ω 80.9kΩ + vo2 - Fig. 220-09 ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002
Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) Page 220 - 11 Simplified Output-Stage Circuit Q19 Q18 VCC Q23 VEE Q14 vout RL Q20 ro13 Req2 rd19 Q14 Req3 rd18 RL=2kΩ Ri3 Q23 Fig. 220-06 Finding the Loading of the Output Stage on the Second Stage: Assume a nominal load resistance of RL = 2kΩ and that Q14 is supplying a 2mA current to this load. Further assume that Q20 is conducting very little current at this point in time. βNVt IC14 = 3.25kΩ (IC14 ≈ 2mA) rπ14 = ro13A = VAP/IC13A = 50V/180µA = 272.7kΩ Req2 = rπ14 + (βN14 +1)RL = 505.3kΩ Req3 ≈ Req2||ro13A=177.1kΩ rπ23 = βPVt IC13A = 7.1kΩ Ri3 = rπ23 + (βP + 1)Req3 = 9.04MΩ ECE 6412 - Analog Integrated Circuit Design - II Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) © P.E. Allen - 2002 Page 220 - 12 Output-Stage Circuit - Continued The effective load on the second stage is therefore RLoad2 = Ri3||Ro2 = 80.15kΩ Av2 = Gm2RLoad2= 544.2 ⇒ 54.7dB AvT = Av1Av2= (565.1)(544.4)= 307,700 ⇒ 109.8dB Equivalent Circuit for Calculation of the Output Resistance: Ro2 + rπ23A (β +1) ]= 2.00kΩ Req4 =ro13A||[rd19 + rd18 + Req4 + rπ14 β +1 Rout = = 21Ω Routtotal = 21Ω + 27Ω = 48Ω Voltage gain: Assume the voltage gain is 1. Ro2=83kΩ ro13 Req4 Q14 vout rd18 Rout rd19 Q23 Fig. 220-07 ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002
Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) Page 220 - 13 Small-Signal Equivalent Circuit for the Complete 741 Op Amp + vid - Rid 2.7MΩ vid 5.4kΩ Ro1 6.8MΩ + vi2 - Ri2 5.7MΩ vi2 147Ω Ro2 83kΩ + vi3 - Ri3 9.1MΩ vi3 Ro2 = 47Ω + vout - Fig. 220-08 Voltage gain = 109.8dB Differential input resistance = 2.72MΩ Output resistance = 48Ω ECE 6412 - Analog Integrated Circuit Design - II Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) 741 Circuit for SPICE Simulation 21 VCC Q9 3 Q8 Q12 1 + Q1 4 Q3 R5 39kΩ 6 24 Q11 7 Q5 Q10 26 R4 5kΩ ECE 6412 - Analog Integrated Circuit Design - II 23 Q13A Q13B 17 Q19 Q15 Q2 5 Q4 VCC Q7 8 Cc 2 - VCC Q16 16 R10 40kΩ Q23B Q18 15 Q23A 14 Q17 13 R8 100Ω 9 11 R3 50kΩ 10 R1 1kΩ Q6 12 Q22 R2 1kΩ R9 50kΩ VEE 22 © P.E. Allen - 2002 Page 220 - 14 Q14 18 vout 19 Q20 R6 27Ω R7 27Ω 20 Q21 25 Q24 50kΩ Fig. 210-09 © P.E. Allen - 2002
Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) Page 220 - 15 Spice Simulations of the 741 Op Amp uA741 Operational Amp Spice File ** 741 OP AMP ** * BIAS CIRCUIT * Q12 23 23 21 PNP Q11 24 24 22 NPN Q10 6 24 26 NPN Q13A 17 23 21 PNP 1 Q13B 14 23 21 PNP 3 Q15 17 18 20 NPN Q21 25 19 20 PNP Q22 8 25 22 NPN Q24 25 25 22 NPN Q23B 22 14 8 PNP R5 23 24 39K R4 26 22 5K R11 25 22 50K CC 14 8 30PF * * DIFF AMP * Q1 3 1 4 NPN Q2 3 2 5 NPN Q3 7 6 4 PNP Q4 8 6 5 PNP Q5 7 9 10 NPN Q6 8 9 11 NPN Q7 21 7 9 NPN Q8 3 3 21 PNP Q9 6 3 21 PNP R1 10 22 1K R2 11 22 1K R3 9 22 50K * DARLINGTON ** Q16 21 8 12 NPN Q17 14 12 13 NPN R9 12 22 50K R8 13 22 100 * OUTPUT STAGE * Q19 17 17 16 NPN Q18 17 16 15 NPN Q23A 22 14 15 PNP Q14 21 17 18 NPN 3 Q20 22 15 19 SPNP R10 16 15 40K R6 18 20 27 R7 20 19 22 * POWER SUPPLY * VCC 21 0 DC=15 VEE 22 0 DC=-15 * ** ANALYSIS ** *DC Sweep to find input offset voltage *Connect output to inverting input for unity gain buffer *Rshort 20 2 0.001 *VIN+ 1 0 DC 0 AC 0 *.DC VIN+ -15V +15V .1V * Now provide input offset voltage *VIN- 2 0 DC=851.325UV AC=0 *Open Loop Gain *Remove Rshort *VIN+ 1 0 AC=1 *VIN- 2 0 DC=851.325UV AC=0 *.AC DEC 20 1 10MEG ECE 6412 - Analog Integrated Circuit Design - II Lecture 220 – AC Analysis of the 741 Op Amp (2/25/02) © P.E. Allen - 2002 Page 220 - 16 SPICE File - Continued *.TF V(20) VIN+ *Slew Rate - Connect output (node 20 to node 2 with +Rshort) *VIN+ 1 0 PULSE (0 1 10us .001us .001us 10us 30us) *.TRAN .5us 30us * .MODEL NPN NPN(IS=5E-15 RB=200 RC=250 BF=250 +BR=2 RE=2 VA=130 TF=.35NS CJE=1PF PE=.7V ME=.33 +CJC=.3PF PC=.55V MC=.5 CCS=3PF PS=.52 MS=.5V) * .MODEL PNP PNP(IS=2E-15 RB=300 RC=300 RE=10 +BF=50 BR=4 VA=50 TF=30NS CJE=.3PF PE=.55V ME=.5 +CJC=2PF PC=.55V MC=.5 CCS=3PF PS=.52V MS=.5V) .MODEL SPNP PNP(IS=1E-14 RB=150 RC=50 RE=2 +BR=4 BF=50 VA=50 TF=20NS CJE=.5PF PE=.55V ME=.5 +CJC=2PF PC=.52V MC=.5 CCS=3PF PS=.52V MS=.5V) * .OPTIONS LIMPTS=0 .PROBE .END ECE 6412 - Analog Integrated Circuit Design - II © P.E. Allen - 2002
分享到:
收藏